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Abstract—Guaranteeing network connectivity in post-disaster
scenarios is challenging yet crucial to save human lives and
to coordinate the operations of first responders. In this paper,
we investigate the utilization of low-altitude aerial mesh net-
works composed by Small Unmanned Aerial Vehicles (SUAVs)
in order to re-enstablish connectivity among isolated end-user
(EU) devices located on the ground. Aerial ad-hoc networks
provide the advantage to be deployable also on critical scenarios
where terrestrial mobile devices might not operate, however their
implementation is challenging from the point of view of mobility
management and of coverage lifetime. In this paper, we address
both these issues with three novel research contributions. First,
we propose a distributed mobility algorithm, based on the virtual
spring model, through which the SUAV-based mesh node -called
also Repairing Units (RUs) in this study- can self-organize into a
mesh structure by guaranteeing Quality of Service (QoS) over the
aerial link, and connecting the maximum number of EU devices.
Second, we evaluate our scheme on a realistic 3D environment
with buildings, and we demonstrate the effectiveness of the aerial
deployment compared to a terrestrial one, in terms of coverage
and wireless link reliability. Third, we address the problem of
energy lifetime, and we propose a distributed charging scheduling
scheme, through which a persistent coverage of RUs can be
guaranteed over the emergency scenario.

I. INTRODUCTION

In the aftermath of a large-scale emergency, the breakdown
of communication infrastructure impacts the actions of the
first responders, i.e. the dissemination of information to the
general population [1], as demonstrated by recent catastrophic
events worldwide (e.g. the earthquake in Italy in 2012). Thus,
there is strong motivation towards the realization of backup
communication systems that are able to quickly self-deploy in
the aftermath of an emergency and ensure temporary network
services in the affected area.

A recent report from FCC proposes the utilization of
low-altitude, Deployable Aerial Communications (DAC)
systems to support first response operations on post-disaster
scenarios, due to their advantages over traditional terrestrial
infrastructures [1]. DAC systems can guarantee higher
coverage than ground wireless networks as aerial links are
less affected from fading, and are more suited when road
mobility has been compromised (e.g. flooding). Nowadays,
deployment of low-altitude DAC systems is feasible thanks
to the increasing availability and affordability of Small
Unmanned Aerial Vehicles (SUAVs), such as quadcopters.
However, when planning for the aerial coverage of large-scale

emergency scenarios for at least the first 48 hours, coordinated
mobility and energy issues must be taken into account [7].
Network mobility is known to be highly challenging in 3D
environments, and only few works investigate the creation of
flying self-organizing swarms, specially designed for rescue
operations [2] [3] [4] [5] [6].
In this paper, we take into account both mobility and energy
issues in the deployment of SUAV-based mesh networks for
backup communication systems in post-disaster scenarios.
More specifically, we consider an emergency scenario, where
not all End-User (EU) devices are connected to each other,
and the aerial mesh attempts to build the links between them.
Three contributions are provided: (i) We extend our earlier
distributed algorithm in [15] [16] in the context of a swarm of
SUAVs, that allows them to self-organize into an aerial mesh
to maximally connect the EUs on the ground. The mobility
scheme is based on the Virtual Spring force model [14],
and introduces channel-aware metrics in order to guarantee
a minimum link quality on the air-to-ground and air-to-air
links. (ii) Second, we model a realistic 3D urban environment
in OMNET++, with shadowing effect caused by buildings,
and investigate the benefits provided by an aerial mesh
deployment compared to a terrestrial deployment (through
mobile robots), in terms of coverage, link stability, and
altitude. (iii) Third, we investigate approaches to maximize
the lifetime of the aerial mesh by considering a scenario
where SUAVs can recharge their batteries through contact
with the ground station. A distributed scheduling algorithm
is proposed that ensures a guaranteed coverage area by the
SUAVs, while network lifetime is maximized.

II. RELATED WORKS

Recent studies have been focused on three research direc-
tions: characterization of aerial links, dynamic establishment
of swarm flying structures, and task assignment in mission-
critical scenarios [5]. Mathematical bounds for capacity, cov-
erage and connectivity of nodes placed in 3D spaces are
derived in [8]. However, this work does not consider several
aspects of real scenarios, like the antenna orientation and the
shadowing caused by buildings. For these reasons, testbeds
have been used in [9] [10] to characterize the performance of
two-hops aerial mesh networks. In [9], the path loss and the





We assume that each disconnected EU device periodically
transmits a HELLO message, with its position and identifier
in order to enable its localization from the RUs. Similarly,
while flying, each RUi broadcasts a BEACON message on the
Common Control Channel (CCC) in the 2.4 GhZ band every
Tf intervals containing its id, position, the number of EU
devices currently connected to (ni

EU ), and the set of neighbor
RUs of RUi (Neighi).
In the following, we explain how the k, l and ~x parameters are
defined for the AtA and AtG links. The AtF link case is de-
scribed in Section IV-A. In [14], displacement of virtual spring
is defined in terms of spatial distance among the end-points.
Conversely, we propose a formulation of the displacement that
reflects the communication quality of the AtA/AtG link in
terms of Link Budget (LB). More specifically, once receiving
a BEACON message from RUj or an HELLO message from
EUj , RUi computes the Link Budget of the link i ↔ j (i.e.
LB(i, j)) as follows:

LB(i, j) = P ri
j − RSi

thr (2)

where P ri
j is the receiving power at RUi, and RSi

thr its
receiving sensitivity. The LB metric, also called fading margin,
provides an indication of the communication reliability (i.e. it
tells when the link is going to break), and at the same time
indicates the maximum achievable rate that can be offered
on that link. We introduce the requested link budget (LBreq)
to express the Quality of Service (QoS) requirements which
must be guaranteed on each link of the aerial mesh. Then,
we formulate the displacement (~x − l0) as a function of the
requested and current LB on the i − j link, which can be
derived from propagation models as:

δ = α

√
max(LB(i, j), LBreq)
min(LB(i, j), LBreq)

− 1 (3)

Here, α is the propagation decay exponent (equal to 2 in our
scenario). We observe for:

• AtA link. In this case kAtA is a fixed parameter in
the range [0:1] (0.5 in our experiments). If the spring
displacement expresses the requested link quality, the
value of kAtA defines the system responsiveness, i.e. how
quickly RUs will act in order to meet the QoS value
(LBreq).

• AtG link. In this case, kAtG is dynamically adjusted on
the basis of number of EUs connected to RUi (i.e. ni

EU )
as follows:

kAtG =
ni

EU

max(nj
EU ) ∀j ∈ Neighi

(4)

In practice, the stiffness (and thus the force module)
of the AtG spring is proportional to the number of
connected EUs at the current location, and scaled on the
basis of the CI of neighboring nodes. As a result, a RU
connecting more EUs at the current location will oppose
more resistance to move than its neighbors.

Based on its connection with other neighboring RUs, and
discovered EU devices, multiple virtual forces ~R0, ~R1 ... ~Rn

act on each RU. Every TDEC intervals, each RUi computes
the resultant force ~R defined as ~R =

∑n
i=0

~Ri, and moves
in the direction indicated by ~R, with constant speed. To avoid
fluctuations we define two additional mobility mechanisms: (i)
a minimum threshold Rthr is introduced, so that an RU will
change its position only if | ~R| > Rthr, and (ii) before moving
on the direction indicated by ~R, each RU verifies through the
CI metric whether any breakage of AtA link will occur, and
if so, it does not update its position.

A. Exploration phase

This phase allows the RUs to locate the EU devices and
connect them to the mesh. While poor exploration might
translate into suboptimal CI performance, uncoordinated mo-
bility of RUs can lead to the partitioning of the aerial mesh.
To address both the connectivity and performance issues,
our mobility scheme delegates the exploration phase to a
dynamically selected set of special nodes, called Scout RUs,
which are placed on the edges of the aerial mesh. A virtual
spring force (with length equal to 0, and thus attractive only) is
used to drive RUs towards less explored cells of the grid. More
specifically, the exploration procedure involves four steps:

• Scout selection. Every TSCOUT time instants, each RUi
checks its position compared to its neighbour RUs. In
case Ri does not detect any other RU in its visilbility
zone (defined as a cone with sweep angle of θ centered
in RUi), then it self-elect as scout node, with probability
equal to pSCOUT .

• Direction selection. We assume that each RUi keeps
statistics about the number of times it has visited each
cell j of the scenario (i.e. vi(j)). The cell value vi(j)
is incremented by 1 each time RU stands on cell j for
a minimum duration interval (equal to 10 second in our
experiments). We consider the exploration frontier of RUi
(EFi) as the set of cells located inside the intersection of
the square centered on the current cell, and of side equal
to 2 · h + 1, and the visibility zone of Ri. In Figure 2,
we depict the EF zone with h=1 and θ=30. In practice,
the parameter h defines the horizon of the exploration
phase, i.e. how far RUi is looking at when deciding its
next position. Then, RUi selects the cell j that has been
less visited in EFi, i.e. j = argmin vi(k)|∀k ∈ EFi.

• Force computation. Once the next cell j has been deter-
mined, a virtual AtF spring is built between RUi and
the center of cell j. The spring displacement is fixed
and equal to a reference value LBmin. Vice versa, the
stiffness constant kAtF is adjusted on the basis of the
amount of exploration performed on cell j, i.e.:

kAtF =
(

1 −
vi(j)
vMax

i

)vmin
i +1

(5)

where vMax
i and vmin

i are respectively the maximum and
minimum cell values for RUi, considering all cells of the
scenario, i.e. vMax

i = max(vi(j)), ∀j ∈ G × G and vmin
i =

min(vi(j)), ∀j ∈ G × G. Through Equation 5, we express
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Fig. 3. The psr
i function for different values of αi.

the intuitive concept that RUi should be more attracted by
cells that has been explored less than the average, and that the
exploration force decreases when the discovery ratio of the
full scenario (i.e. vmin) increases.

V. DISTRIBUTED CHARGING SCHEDULING

In this section, we propose a distributed algorithm to let
RUs autonomously decide when to recharge. The algorithm is
designed based on the following requirements: (i) it attempts to
preserve the CI, by giving precedence to RUs whose departure
will not cause the partitioning of the aerial mesh, and (ii)
it accounts for the recharging need of each RU based on
its residual energy. To fulfill these requirements, we propose
a probabilistic approach, in which each RUi is assigned a
probability pi of recharging, defined as:

pi(Eact
i , Emax

i ) =
(

Emax
i − Eact

i
Emax

i

)αi

(6)

where Emax
i and Eact

i are, respectively, the maximum and the
actual residual battery capacity of RUi. The exponent αi ≥ 1
modifies the probability pi by reflecting the cost incurred by
the departure of RUi, as discussed below. To avoid the case of
a RU having insufficient energy to reach the nearest charging
station, we introduce a threshold value Elim on the residual
energy, below which the RU must go for recharging. Hence,
the probability pi is adjusted as follows:

psr
i =

{
pi(Eact

i − Elim, Emax
i − Elim) if Eact

i > Elim

1 otherwise
(7)

In Figure 3 we plot the psr
i values, for different configuration

of αi. It is easy to notice that psr
i decreases with the current

state of charge of RUi (Eact
i ), and that -for the same value

of Eact
i - the probability is lower for higher values of αi. This

latter is defined as follows:

αi = αcritical
i + αEU

i + 1 (8)

The first component αcritical
i reflects the connectivity degree

of RUi, and is defined as follows:

αcritical
i = αmaxC · (1 − e−#numclusters) (9)

Here, αmaxC bounds the maximum value of αcritical
i (equal

to 12 in our experiments) and #numclusters is defined as
the number of the potential clusters that might be formed if

the RUi disconnects from the mesh. This value is computed
by determining the rank of the matrix ANeighi , where A is
the adjacency matrix of RUi

1. The second component αEU
i

is specific to the AtG link, and reflects the importance of RUi
in terms of EU devices currently interconnected:

αEU
i =

{
αmaxEU · kAtG if ni

EU > 0
0 otherwise

(10)

where αmaxEU bounds the maximum value of αEU
i (equal to

3 in our experiments) and kAtG is the stiffness constant of the
spring for AtG link defined by Equation 4. Basically, through
(9) and (10), the probability psr

i is discounted by considering:
(i) the potential clusters that might occur, and (ii) the isolated
EU devices that might be left.
Every Trecharge seconds, each RUi decides with probability
psr

i whether to go to recharge or not. We assume a linear
charging model, i.e. the charging time CTi is computed as:

CT r max ·
(

Emax
i − Eact

i
Emax

i

)
, where CT r max is the time re-

quired by a full battery recharge. After charging is completed,
the RU resumes its operation.

VI. 3D SCENARIO MODELING

In this Section, we detail how the 3D scenario has been
modeled through the Omnet++ tool. We consider rectangular-
shape buildings, with varying dimensions on the 3 axes.
Although in the evaluation (Section VII) we consider synthetic
generated scenarios, realistic scenarios can also be modeled
through our tool, by importing the XML maps provided
by OpenStreetMaps with building information. Modeling the
wireless propagation effects in 3D environments is highly-
challenging, and owing to the complications of creating ac-
curate ray-tracing models, we consider a simplified 3D prop-
agation model that takes into account the attenuation effect
caused by buildings on the line of sight. Although this model
cannot capture the complex reflection/diffraction phenomena,
its suitability to guarantee good approximation for large-scale
network simulations has been demonstrated in [18]. More
specifically, our algorithm works in three steps:

• First, we consider the Line-of-Sight (LOS), i.e. the
straight line between the sender and the receiver (which
can be two RUs or a RU and an EU device).

• Then, we determine all the points in which the straight
line collides with an obstacle.

• Finally, we apply an attenuation factor to the received
signal, based on the the length of the indoor path and on
the number of intersected outdoor walls.

The pathloss (in dB) is modeled as P L[d] = α · 10 ·
log10(d(i, j)) + β, where d(i, j) is the 3D distance between
node i to node j, α is the propagation exponent (fixed to 2
in our case, i.e. a free-space model is considered) and β is a
zero-mean Gaussian distributed random variable with standard

1The #numclusters value takes into account only the 2-hop neighbors of
RUi, and thus, it provides a local approximation of disconnected components.
We omit details on how the #numclusters is computed.



deviation σ (in dB). By computing the intersection points
between the LOS and the faces of a building b, we derive
the length d′

b, in meters, in which the signal travels indoor.
We thus model the signal attenuation as follows:

Sb = 2 · k + d′
b · η (11)

where k is the attenuation factor due to the outside walls, and
η is the attenuation related to indoor propagation through dry
walls, furniture etc. The parameters k and η are set to 20dB
and 1dB/mt, based on literature surveys. Finally, given B the
set of buildings of the scenario, we compute the power of
received signal as Prx = Ptx − P L[d] −

∑B
b=0 Sb.

In order to further reduce the computation, we consider the
cell-grid world depicted in Figure 2, and we reduce B to B′ ⊆
B, i.e. the set of buildings that are on the cells intersected by
the LOS between nodes i and j.

VII. PERFORMANCE EVALUATION

In this Section we evaluate the performance of the dis-
tributed mobility scheme (Section IV) and of the charging
scheduling algorithm (Section V), on 3D scenarios modeled
according the propagation model described in Section VI. We
consider a scenario of 500m x 500m, with buildings of height
30m placed at random cells of a Manhattan grid scenario.
50 EU devices are randomly distributed at indoor/outdoor
locations. In Figures 4(a) and 4(b) we depict the CI metric
(Section III) when varying the number of RUs and the altitude
from ground. More specifically, in Figure 4(a) we plot the CI
values against the number of RUs, for three increasing building
density configurations, namely Rural, Suburban, and Urban.
Clearly, increasing the number of RUs has a beneficial effect
regardless of the scenario considered, since it translates into
the possibility to enlarge the exploration and coverage range of
the aerial mesh network. Figure 4(a) demonstrates the fact that
the attenuation caused by buildings might have a significant
impact on the quality of AtA links, since RUs are forced to
stay closer to guarantee the request QoS expressed in terms
of minimum Link Budget LBreq (Equation 2). Also, frequent
partitions may occur in the aerial mesh, caused by mobility
of RUs. In Figure 4(b) we further investigate this issue, by
varying the altitude h from ground of the aerial mesh. We
consider a modified version of the Suburban scenario (medium
building density) with building heights uniformly chosen in
the range [10, 20] m. This result clearly demonstrates that
the CI is affected by the altitude h more than the number
of RUs. Indeed, CI value significantly increases when h ≥
15m, i.e. when RUs are -on average- just over the buildings
clutter height. The case with h=0 corresponds to the case in
which mobile nodes move on the ground, and thus the mobility
algorithm described Section IV is implemented by robot
equipped with wheels. Thus, aerial communication performs
much better than ground communication, and the CI with 5
RUs deployed at 20 m is much higher than the CI with 30
RUs on the ground (h=0).

In Figures 4(c) and 5(a), we plot the coverage area with
varying heights of 0m and 25m, when using the same number

of RUs (i.e. 15). All the RUs are injected at the center of the
scenario at the start of the simulation. The blue color gradients
depict the probability that RUs will stop at a given position2.
We see that RUs moving in the air are able to cover much
wider area than terrestrial robots, while guaranteeing the same
quality over the mesh link.

In Figures 5(b) and 5(c) we evaluate the effectiveness of
the distributed charging scheme in guaranteeing a persistent
coverage over the emergency area through four scheduling
approaches: (i) Distributed, which corresponds to our solution
described in Section V, (ii) Centralized (lowest), which corre-
sponds to a centralized algorithm in which at each Trecharge
interval the RUi with lowest residual energy Eact

i is selected
for recharging, (ii) Centralized (lowest with αEU

i = 0) which
works as the previous, but it chooses the lowest residual energy
RUi with αEU

i = 0, i.e. not connected to EU devices, (ii)
Centralized (lowest with αcritical

i = 0) which works as the
previous, but it chooses the lowest residual energy RUi with
αcritical

i = 0, i.e. not originating mesh partitions after its
departure. Figures 5(c) shows the average CI for the four
algorithms when varying the number of available RUs. This
result demonstrates that selecting RUs on the basis of the
energy factor only -i.e. like the Centralized (lowest) works- can
cause frequent partitioning events within the mesh networks.
This is also confirmed by Figure 5(c) where we depict the
average number of isolated clusters that are originated during
the simulation. The Centralized (lowest with αEU

i = 0)
scheme attempts to maximize the number of connected EU
devices on the AtG link, and for this reason, it outperforms
the other two centralized schemes in terms of CI (Figure 5(c)).
Vice versa, the Centralized (lowest with αcritical

i = 0) scheme
attempts to preserve connectivity among RUs on the AtA
links, and for this reason it creates a reduced number of
clusters compared to the other two centralized algorithms
(Figure 5(c)). Our distributed algorithm takes into account both
the connectivity of the aerial mesh and to EU ground devices
through the two components of αi (Equations 8 and 10), to
give the best performance both in terms of CI and of number
of cluster partitions.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have explored ways to ensure connectivity
among End User (EU) devices in post-disaster scenarios
through the utilization of aerial mesh networks composed by
Repairing Units (RUs). A swarm mobility algorithm, based
on virtual spring model, has been proposed to allow the
RUs explore the scene and self-organize into a multi-hop
network. In addition, a distributed scheduling algorithm has
been described to tackle the limited flying autonomy of RUs
while guaranteeing a persistent coverage. We are further ex-
ploring implementation of the algorithm into a real testbed and
analyzing the impact of antenna orientations on the network.

2Lighter colors indicate more frequent areas, darker colors indicate less
frequent area, white color indicates areas with probability lower than 0.01.
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Fig. 4. The CI metric as a function of the number of RUs and of the altitude h is shown in Figure 4(a) and 4(b), respectively. The average positioning of
the RUs for h = 25 is shown in Figure 4(c).
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Fig. 5. The average positioning of the RUs for h = 0 is shown in Figure 5(a). The average CI metric and the number of originated clusters for the four
scheduling charging algorithms are depicted in Figures 5(b) and 5(c), respectively.
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