
Data-Centric Attribute Allocation and Retrieval
(DCAAR) Scheme for Wireless Sensor Networks

Ratnabali Biswas, Kaushik Chowdhury and Dharma P. Agrawal

OBR Research Center for Distributed and Mobile Computing, Dept. of ECECS,
University of Cincinnati, Cincinnati, OH 45221-0030

Email: {biswasr,kaushir,dpa}@ececs.uc.edu

Abstract – Wireless sensor networks have enabled information
gathering from a large geographical region and present
unprecedented opportunities for a broad spectrum of monitoring
applications. In this paper, we propose a data-centric storage
scheme to determine a distribution of attributes over a large-scale
sensor network such that the cost of retrieving data is minimized.
We analytically determine the conditions under which the
proposed architecture is beneficial and present simulation results
to demonstrate the same. To the best of our knowledge, this is the
first attempt to determine an allocation of attributes over a
sensor network based on the correlations between attributes.
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I. INTRODUCTION

Recent technological advances have enabled distributed
information gathering from a given region by deploying a
large number of networked tiny wireless sensor nodes.
However the small form factor of these nodes limits the size of
the battery or the total power available with each sensor node.
Since data communication is the dominant component of
energy consumption at the node level, protocol design for
sensor networks is geared towards reducing communication in
the network. Thus we propose a data-centric storage scheme
for storing attributes in a sensor network such that
communication involved in querying the network can be
minimized. A data-centric storage scheme [1][6][7][8] allows
events to be stored at specific rendezvous points within the
network that queries can access directly. In this paper, we have
proposed the DCAAR scheme that determines an allocation of
attributes depending on the correlations between them. We
have analytically determined the conditions under which the
DCAAR scheme should be preferred. Future sensor networks
are expected to support several protocols, with middleware
software allowing a user to select the preferred protocol as per
his requirements.

The rest of the paper is organized as follows. Section II
describes a general scenario where the proposed scheme can
be used and lists the basic assumptions for the scheme. Section
III defines the allocation problem and gives an outline of the
proposed DCAAR scheme. The detailed algorithms are given
in Section IV. Section V determines analytically the
conditions under which the DCAAR scheme should be
preferred. The simulation results are discussed in Section VI.

Section VII lists other data-centric storage schemes, while
Section VIII concludes the paper with future research agenda.

II. CONTEXT

In this section we first present a general scenario where the
DCAAR scheme can be applied and list some basic
assumptions about the sensor networks being considered.

A. A General Scenario

We have designed a scheme that can be employed for large
scale sensor networks of the future. For example, given a
geographical area, the user might want to deploy a sensor
network that simultaneously serves multiple applications like
precision agriculture, weather monitoring, ecosystem
monitoring etc. For each application the user might want the
network to sense specific physical attributes (e.g. humidity,
temperature, light etc. for weather monitoring application;
temperature, light, presence of chemicals etc. for precision
agriculture application and so on.) and consequently might
expect the sensor network to respond to specific queries. Since
such large-scale sensor networks would be expected to serve a
substantial number of queries simultaneously for several
applications, the number of attributes sensed by the network
would also be substantial. The proposed DCAAR scheme is
designed for minimizing cost of data retrieval from large-scale
sensor networks serving such real-life scenarios.

B. Basic Assumptions

In a sensor network, the nodes which issue user queries are
called sink nodes. We have assumed that the sink node could
be at any random position in the network. Queries issued by a
sink may be classified into two broad categories:

• Location-based query is used when the user is
interested in attribute values from only a particular
region of the network and hence the query is routed
directly to that region.

• Attribute-based query is used when the user is
interested in data satisfying some attribute-based
selection criteria. Such queries are flooded in the
entire network and the relevant nodes route their data
to the user using aggregation schemes [4][5].

The motivation behind the DCAAR scheme is to obviate
the need for communication-extensive flooding in case of
attribute-based queries. The sensor nodes are assumed to be
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location-aware [3]. We also assume that the sensor network
has been deployed on a rectangular region and the nodes are
aware of the geographical boundaries of the network.

III. THE ALLOCATION PROBLEM

Sensor networks can be envisioned as a large distributed
database where the sensor nodes generate named data against
user-specified queries. In this section, we define the Allocation
Problem of distributed databases in the context of sensor
networks and present our proposed architecture.

A. Problem Formulation

We define the Allocation Problem for sensor networks as
follows: “Assume that there are a set of sensed attributes A =
{A1, A2, …, Am} and a network S of sensor nodes which have to
serve a set of queries Q = {Q1, Q2, …,Qq}. The allocation
problem involves in finding the optimal distribution of A to S.”
Here the optimality can be defined with respect to minimal
energy consumption and hence minimal communication
required in serving the set of queries Q. We propose the
DCAAR scheme as a heuristic solution for the sensor network
allocation problem.

We formulate the allocation problem as follows. Let

{ }qQQQQ ,,, 21 != be a set of user-defined queries. We assume

that a set of priorities { }qppp ,,, 21 ! for the queries

{ }qQQQ ,,, 21 ! is given. The priority pi of a query Qi could

depict either the probability with which query Qi is issued per
unit time or the frequency of tuples generated for query Qi per
unit time or a combination of both. These values may be set by
the system designer to specify the relative priorities of queries

and are normalized such that
=

=
q

i

ip
1

1. Each query Qk can be

modeled by the set of attributes included in the query i.e.

{ }
kiiii AAAQ ,,,

21
!= . As mentioned in Section II.B., the sensor

nodes are assumed to be uniformly deployed over a
rectangular region. Thus our objective is to distribute the m
attributes over this rectangular field of sensor nodes. We do so
by splitting the rectangular area into a grid G of size

   mm × and each attribute Ai is allocated to a particular

grid cell. The allocation problem thus reduces to finding an

optimal distribution of m attributes over a    mm × grid.

Let GAf →: be an optimal distribution function. Thus

( ) ( )    },,1{},,,1{,, mymxyxAf kkkkk !! ∈∈= implies that

attribute Ak should be stored in grid cell (xk,yk) of the deployed
rectangular sensor network. The function f then attempts to
minimize the following two costs for each query Qi, i=1,…,q:

• Query Evaluation Cost i

EC : This is the cost of

aggregating resultant tuples for all the attributes

{ }
kiii AAA ,,,

21
! specified in the query Qi. For

minimizing this cost, attributes belonging to the same
query should be placed near each other in the grid, i.e.
the cost of the minimum spanning tree joining the grid
cells ( ) ( ) ( ){ }

kk iiiiii yxyxyx ,,,,,,
2211
! should be minimized.

• Query Access Cost i

AC : This includes the cost of

query dissemination from the sink and result delivery
to the sink. In order to minimize this cost, the query
attributes should be placed close to the sink.

Thus, the function f should minimize the total query evaluation

cost CE (
=

q

i

i
EC

1

) and total query access cost CA (
=

q

i

i
AC

1

) for

the set of queries Q.

B. DCAAR Scheme

To determine a good distribution function GAf →: we

employ a two-stage heuristic. Note that queries and their
associated priorities indirectly define correlations between
attributes. For example, if a query with a very high priority
includes attributes Ai and Aj we can say that Ai and Aj have a
high correlation since they are accessed together very
frequently. Attributes with higher correlations should be
placed closer to each other for minimizing the cost CE.
Similarly by placing more frequently accessed attributes closer
to the center (since it is equally likely for the sink to be in any
position), the cost CA can be minimized. To identify the
frequently accessed attributes, we calculate the individual
access probabilities P(Ai) of attributes as follows:

( ) ( ) ( )
=

=∀=
q

j

jiji miQAPQPAP
1

,,1,| ! ,

where ( ) mjpQP jj ,,1, !=∀= and ( )
ji

ji

ji QA

QA
QAP

∉

∈
=

,0

,1
| (1)

The first stage of the DCAAR scheme creates a heap-like
data structure called the correlation tree that provides a
holistic view of all the attributes in terms of their access
probabilities and correlations. The second stage uses this
correlation tree to determine an optimal distribution of the
attributes to respective cells of the grid. As an illustration,
Table I lists a set of given queries Qi along with their
priorities. The corresponding correlation tree and the optimal
allocation of attributes are shown in Fig. 1. Note that since
query Q7 has the highest priority, attributes A2, A35, A37, and
A39 have been allocated storage cells nearest to the center of
the grid and adjacent to each other. The algorithms for
determining the function f are described Section IV. Since the
algorithms are topology independent, each sensor node may
compute f independently. However to reduce the overhead
involved in performing the same redundant computation all
over the network, the function f may be computed at the sink
and then sent to all the nodes in the network. For now, we
assume that such a function f is available to all the nodes in
network and present our proposed architecture for query
processing.

C. Proposed Architecture

Every sensor node is assumed to be aware of its own
location as well as the geographical boundaries of the sensor
network. Hence every sensor node can identify which grid cell
it belongs to. We call the grid cell responsible for storing
attribute Ai as the zone for attribute Ai and denote it by Zi. The
number of nodes belonging to a zone Zi, denoted by N(Zi),
depends on the density and distribution of the sensor nodes
over the network. Some of the nodes belonging to each zone



have special functionalities apart from sensing and routing.
Based on the functionalities assigned to them, these nodes can
be classified into 3 types viz. control node, storage nodes and
replica nodes. The storage nodes of a zone Zi are responsible
for storing the values of the attribute Ai. The number of storage
nodes required in a zone Zi is denoted by N(Ai) and depends on
the total amount of data values corresponding to attribute Ai

and the memory capacity of each sensor node. For every zone
Zi, there is one control node that is responsible for fetching
data from the storage nodes using specialized indexes that it
maintains. Apart from the control nodes and storage nodes,
some of the other nodes in a zone may store redundant or
summary information about attribute values to provide fault
tolerance and are hence called the replica nodes. Fig. 1(b)
shows the proposed architecture where the control node is the
node nearest to the center of each zone.

The steps involved in serving a query are as follows:

• Sink gets a query { }
kiiii AAAQ ,,,

21
!= whose

attributes are stored in the zones { }
kiii ZZZ ,,,

21
! .

• The sink determines which zone is nearest to itself,
say

jiZ , and sends the query to zone
jiZ .

• The control node of zone
jiZ uses its stored indexes to

retrieve relevant values of
jiA from the storage nodes.

• The control node of zone
jiZ also computes the

optimal route of disseminating the query to the zones
storing the remaining query attributes. The optimal
route for retrieving the attributes { }

kiii AAA ,,,
21
!

would essentially be the minimum spanning tree
joining the zones { }

kiii ZZZ ,,,
21
! . The complexity

involved in calculating this route is minimal (any
minimum spanning tree algorithm may be used) since
a query will not contain a large number of attributes.

• The computed route is used for routing the query and
routing the resultant data tuples back to the sink.
While routing the data to the sink, the control nodes of
the respective storage zones use aggregation [4][5]
and in-network processing mechanisms [9] to further
reduce the amount of data transfer in the network.

The proposed architecture achieves efficiency in query
processing at the cost of maintaining updated values of all the
attributes in the zones where they are stored. To reduce this
maintenance overhead, a soft threshold scheme may be used:

• Suppose a sensor node in zone Zi senses an attribute
Ak. Suppose the soft threshold for attribute Ak is ϕk.

If the difference between the previously sensed value
and the current value of Ak is more than ϕk, the
current value needs to be reported to the storage zone
Zk housing Ak. However instead of sending update
messages for every individual node fluctuation, the
sensor node first sends an update message to the
control node of its own zone Zi.

TABLE I. LIST OF QUERIES Qi AND ASSOCIATED PRIORITIES pi

Qi pi
ki

A Qi pi
ki

A Qi pi
ki

A

Q1 .1313
A1,A3,A5,

A7,A9

Q13 .0510 A39 Q25 .1017 A8

Q2 .0082
A11,A13,
A15,A17

Q14 .0161 A3,A7 Q26 .0136
A14,A20,

A26

Q3 .0003
A19,A22,

A23
Q15 .0005 A11 Q27 .0001 A32,A38

Q4 .0170
A25,A27,

A29
Q16 .0189 A15 Q28 .0007 A5

Q5 .0005 A31,A33 Q17 .0007
A19,A23,
A27,A31,

A35

Q29 .0001 A12,A19

Q6 .0017 A35 Q18 .0001
A4,A8,A

12,A39

Q30 .0001 A26

Q7 .2833
A2,A35,A

37,A39
Q19 .1179

A16,A20,
A24

Q31 .0681 A34

Q8 .0063 A5,A8,A1 Q20 .0010 A28,A33 Q32 .0164
A8,A16,A

24,A32,A40

Q9 .0015 A14,A17 Q21 .0008 A36 Q33 .0008
A9,A18,A

27,A40

Q10 .0044 A20 Q22 .0117
A1,A6,A

11,A16

Q34 .0015
A6,A16,A

36

Q11 .0015
A4,A27,A

30
Q23 .0005

A21,A26,
A31

Q35 .1180 A26,A36

Q12 .0001 A33,A36 Q24 .0001 A10,A36 Q36 .0035 A7
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Figure 1(a). Correlation Tree corresponding to queries in Table I.

Figure 1(b). Allocation of attributes to grid

• The control node of Zi waits for a predefined time
interval Tk. All the update messages for Ak that the
control node receives from nodes in its own grid cell
during time Tk are then combined into aggregate
update message(s) and sent to zone Zk housing Ak. The
duration Tk is called the update epoch for attribute Ak.

All the messages (viz. query message, update message or
resultant data tuple) can be routed in the network using
geographic routing protocols like GPSR [2].
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Figure 2. Shows initial tree for query { }
kiiii AAAQ !

21
= .

D. Advantages and Limitations

As with all data-centric storage schemes, the DCAAR
scheme obviates the need for flooding queries in the network.
The user response time for queries is also minimized.
Moreover DCAAR minimizes both query access cost and
query evaluation cost. In addition to these benefits, having all
values of an attribute at one place provides helpful global
context for evaluating local data. For example, sensed
temperature values could be compared against the average
temperature value of the network to detect fires or other local
temperature spikes. Furthermore, user-defined parameters like
soft threshold and update epoch allows the user to tune the
performance of the system as per his requirements.

The DCAAR scheme works well as long as the overhead
of sending update messages to storage zones does not
supersede the advantage of minimizing the query cost. That is,
if the attributes are such that they have very frequent
fluctuations or fluctuations continually occur all over the
network but the queries are not frequent enough, then more
energy may be expended in proactively maintaining updated
values in storage zones. However since most real-life physical
phenomena are localized, the fluctuations can be considered to
be mostly local and not too many. Consequently the DCAAR
scheme should perform well in most real-life situations.

IV. ALGORITHMS

In this section we present the algorithms
CreateCorrelationTree and AllocateGrid that have been
employed in the two stages of the DCAAR scheme.

A. Algorithm CreateCorrelationTree

Input: List of queries Qi and associated priorities pi

Output: Correlation Tree/ Forest

This is the first stage of the heuristic which creates a heap-
like data structure called the correlation tree to represent the
correlations between attributes as well as the relative ordering
of attributes in terms of their access probabilities. The
initialization phase of the algorithm constructs a tree for each
query Qi as shown in Fig. 2. The query attribute with highest
access probability is made the root of the query tree. Thus for
query Qi in Fig. 2,

piA has highest probability i.e.

( ) ( ) ( ) ( ){ }
kp iiii APAPAPAP ,,,max

11
!= . The weight of an edge in

tree T joining the attributes Ai and Aj is denoted by wT(Ai,Aj)
and depicts the probability of Ai and Aj being in the same
query. At each iterative phase, a query tree T is chosen from
this initial list in ascending order of query priorities, and
combined with the partial solution PS (i.e. the partial
correlation tree/forest at that iteration phase) as shown in the
pseudocode. The trees are combined using usual tree union
algorithms. The case that requires special attention is when an

attribute Ax has different parents in PS and T and thus
algorithm AdjustCorrelationTree is invoked.

PSEUDOCODE : CreateCorrelationTree
Sort query trees in ascending order of their query probabilities
Choose query tree T = query tree with lowest query probability
PS = T
// initial partial solution = query tree with lowest query probability

For ( each remaining query tree T from sorted list of query trees ) do

{ If ( (attributes of T) ∩ (attributes in PS) = φ) then
{ // no attribute of T is present in PS

PS = PS +T
// add query tree T to existing partial solution PS }

Else
{ // some of the attributes in T are present in partial solution PS

Ap = root of T

If ( Ap ∉ PS ) then // Ap is not present in partial solution PS
{ PS = {Ap} + PS // add Ap to PS as a single node tree }
For ( each child node Ax in T ) do

{ If ( Ax ∉ PS ) then
{ Add Ax as child of Ap in PS

Set wPS(Ap,Ax)= wT(Ap,Ax) }
Else // if Ax is present in PS
{ If ( Ax has no parent in PS ) then

{ Set Ax as child of Ap in PS
Set wPS(Ap,Ax) = wT(Ap,Ax) }

Else // Ax has parent in PS
{ If ( parent of Ax in PS is also Ap ) then

{ wPS(Ap,Ax)= wPS(Ap,Ax)+wT(Ap,Ax).
// increase corresponding edge weight }

Else // Ax has different parent in PS
{ Aq = parent of Ax in PS

Call PS = AdjustCorrelationTree(PS,T,Ax,Ap,Aq) }
} } } } }
Return PS // PS is the final correlation tree/forest

B. Algorithm AdjustCorrelationTree

Input: PS - Partial solution, T - Query tree to be added,
Ax - Attribute present in both PS and T, Ap - Parent of Ax in T,
Aq - Parent of Ax in PS.
Output: PS – New partial solution

This algorithm makes the parent (Ap or Aq) that has a
higher correlation (i.e. edge weight) with Ax as the parent of Ax

in the new partial solution, while the other parent is made a
sibling of Ax. We reason as follows. Algorithm AllocateGrid
always stores an attribute as close to its parent as possible and
thus Ax is made child of the parent with which it has higher
correlation. Also since algorithm AllocateGrid stores every
child attribute near its parent, sibling attributes also end up
being stored fairly close to each other in the grid. This justifies
making the other parent a sibling of Ax in the new partial
solution. A triplet of values called the virtual weight is
assigned to both attributes to signify that they have a
correlation even though they do not share a parent-child
relationship in the tree (Lines 9,17). Note that the heap
property of the correlation tree should be preserved at all times
i.e. if attribute Ai is the parent of Aj, then ( ) )( ji APAP ≥ (Lines

4,12). If necessary, the algorithm Bubble (similar to a usual
heap-creation algorithm) is invoked to adjust the tree so as to
maintain the heap property (Lines 7,15). Before deleting any
edge, a cost-benefit analysis is performed to ensure that
benefit > cost, where cost and benefit are defined as follows,

Cost = Sum of effective weights of deleted edges (2)



Benefit = Sum of effective weights of new edges (3)

where effective weight ( )jiT AAw ,′ of an edge ( )ji AA , is,

( )jiT AAw ,′ = wT(Ai,Aj) + Σ{virtual weights of Aj} (4)

and value of a virtual weight (v,Ay,Az) is,

(v,Ay,Az) = v if Ay and Az are siblings
= 0 otherwise (5)

C. Algorithm AllocateGrid

Input: CT - Correlation tree created by CreateCorrelationTree
List of attributes Ai with access probabilities P(Ai)

Output: Allocation of attribute set A to grid G

PSEUDOCODE : AllocateGrid
Line 1. Sort attributes in descending order of access probabilities
Line 2. Choose Ax = attribute with highest probability
Line 3. Assign Ax to central-most grid cell
Line 4. For ( each remaining attribute Ax

from sorted list of attributes ) do
Line 5. { If ( Ax has no parent in CT ) then
Line 6. { opt_list = Call FindNearestCells(Center)
Line 7. zonex = Call FindMinChildren(opt_list)
Line 8. Assign Ax to grid cell zonex }
Line 9. Else // Ax has parent in CT
Line 10. { Ap = parent of Ax in CT
Line 11. If ( wCT(Ap,Ax) = P(Ax) )
Line 12. { zonep = Assigned grid cell of Ap

Line 13. opt_list = Call FindNearestCells(zonep)
Line 14. opt_list=Call FindFarthestCenter(opt_list)
Line 15. zonex = Call FindMinChildren(opt_list)
Line 16. Assign Ax to grid cell zonex }
Line 17. Else
Line 18. { // Ax has correlations with other attributes also
Line 19. attr_list = Call FindCorrelationAttributes(Ax)
Line 20. attr_corr_list = Call FindCorrelations(Ax)
Line 21. attr_cell_list = Call FindStorageCells(attr_list )
Line 22. opt_list = Call FindOptionCells(attr_cell_list)
Line 23. zonex=Call FindBestCell(opt_list, attr_cell_list,

attr_corr_list)
Line 24. Assign Ax to grid cell zonex }
Line 25.} }

This is the second stage of the DCAAR scheme. This
algorithm allocates attributes to grid cells while trying to
preserve the correlations between attributes as represented by
the correlation tree. The algorithm begins with the attribute Ax

having the maximum access probability and allocates Ax to the

central-most grid cell. It then iteratively assigns attributes in
descending order of their access probabilities as shown in the
pseudocode (Lines 4-25). For each attribute Ax, the algorithm
finds out from the correlation tree CT the attributes that Ax has
correlations with and then determines its optimal position in
the grid. If the Ax has no parent in CT, it is placed as close to
the center as possible (Lines 5-8). However there may be
multiple available grid cells at the same distance from the
center. In that case, the optimal grid cell is the one for which
adjacent already-allocated attributes have minimum number of
unassigned children (Line 7). The justification for choosing
such a cell is that if a cell C is surrounded with attributes that
have more number of unassigned children attributes, then it
would be preferable to leave C for those unassigned children
attributes when other options are available. Next the algorithm
handles the case where the correlation that Ax has with its
parent Ap is the same as its access probability P(Ax) (Line 11-
16). This implies that any query that accesses Ax also accesses
Ap and thus Ax should be stored close to Ap. Finally the
algorithm considers the case where Ax has correlations with
multiple attributes (Lines 17-24). The algorithm FindBestCell
returns the optimal cell for assigning Ax by scanning the list
opt_list for the cell which minimizes the value
Σ{distance(opt_list[i],attr_cell_list[j])*attr_corr_list[j])|∀j}.

The complexity of the algorithms CreateCorrelationTree
and AllocateGrid is O(mlogm), since CreateCorrelationTree is
similar to creating a heap of m attributes while AllocateGrid is
similar to traversing the heap.

V. ANALYSIS

The energy consumption in DCAAR scheme is compared
with that of TAG [5], where an aggregation tree spanning all
the sensor nodes is formed in a distributed manner. For both
the schemes, we assume that only those readings greater than
the hard threshold are reported to the sink. Further for the
DCAAR scheme we assume that the update messages are sent
only when the soft threshold ϕ is crossed. We assume that the
sink is at the centre of the network as shown in Fig. 3. We also
assume that the communication between nodes of a grid cell
and their respective control nodes, the sink and the control
nodes, as well as nodes in different levels of the aggregation
tree all pack available data in the fewest possible packets. The
parameters used in the analysis are listed in Table II.

TABLE II. PARAMETERS USED IN ANALYSIS

Ntotal Total number of nodes in the network
A(i) Area of sub-region at depth i
R Transmission radius
L Length of a side of the deployed region

Hard Threshold

ϕ Soft Threshold

ξ
Ratio of information generated by a single
node to size of data packet

txP Transmission cost of a single packet

d Length of a side of the sub-region
N Nodes reporting a reading >
N’ Nodes reporting a reading >
D(sk,stg) Distance between sink and storage region

Frequency of attribute value crossing

’ Frequency of attribute value crossing ϕ
fQ Query Frequency

PSEUDOCODE : AdjustCorrelationTree
Line 1. If ( wT(Ap,Ax) > w’PS(Aq,Ax) ) then
Line 2. { // Ax has more correlation with Ap than with Aq

Line 3. Make Ax child of Ap and set wPS(Ap,Ax)= wT(Ap,Ax)

Line 4. If ( P(Ap) ≥ P(Aq) ) then
Line 5. { Make Aq child of Ap provided benefit>cost }
Line 6. Else
Line 7. { Call TempTree = Bubble(PS,Ap,Aq)
Line 8. PS = TempTree provided benefit>cost }
Line 9. Add virtual weight (wPS(Aq,Ax), Aq,Ax) to Aq and Ax }
Line 10. Else // Ax has more correlation with Aq than with Ap

Line 11. { // Ax remains child of Aq in the new partial solution

Line 12. If ( P(Aq) ≥ P(Ap) ) then
Line 13. { Make Ap child of Aq provided benefit>cost }
Line 14. Else
Line 15. { Call TempTree = Bubble(PS,Ap,Aq)
Line 16. PS = TempTree provided benefit>cost }
Line 17. Add virtual weight (wPS(Ap,Ax), Ap,Ax) to Ap and Ax }



(a) (b)
Figure 3. Aggregation Tree and DCAAR

A. Energy cost of Aggregation Tree (AT)

The queries are propagated downwards till every leaf node
in the AT is reached. The AT is rooted at the sink and spreads
outwards from the center of the region. For best case
performance, we assume that the AT spans the region
uniformly. We divide the entire area into n concentric square
regions, each of width r as shown in Fig. 3(a). The nodes
present in the ith concentric region are assumed to be at a depth
i in the AT. Thus n is the depth of the tree where 2nr =L.

Area of region i is ( ) 2)12(4 riiA −= , i = 1, 2, 3, … , n.

Thus, the probability that a node lies in region i is given

by ( ) ( )
2L

iA
ip = . Similarly, out of N nodes, the number of such

nodes in the ith region is given by ( )iNp . Thus the energy cost

incurred at each level is ( ) ( ) txPiIiE ××= ξ and the total energy

is given by: ( )
=
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Since each node forwards the query exactly once, the initial
cost of propagating the query down the tree is given by:

txtotalATQuery PNE =)(
(7)

For query-driven systems, information is sent to the sink only
in the event of a query. Hence, total cost of query
dissemination and aggregation is,

( ) ( ))()( ATDataATQueryQPTotal EEfATE += (8)

The total cost incurred in event-driven systems is dependent
on the number of reports generated by the system with

)( ATQueryE =0. In this case, the cost is,

( ) )( ATDataRTotal EATE = !

B. Energy cost of DCAAR Scheme

Let us assume that the storage region X in Fig. 3(b) stores
the values for the desired query attribute. The squares marked
‘1’ represent the first tier of surrounding sub-regions, those
marked ‘2’ indicate the second tier and so on. We approximate
the distance from any node of the ith tier to the center of X as
id and this distance is traversed in id/r hops. Thus the
probability of a node lying in regions marked 1, 2 is,
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'N number of nodes report update messages to control nodes
of their own grid cell. In the worst case scenario, the reporting
nodes are furthest away from the control node at a distance of
d/r hops. Thus energy spent in this update is,
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Number of nodes reporting update of attribute values in tier i
is ( )ipN ' . Energy cost associated with all control nodes in tier

i reporting aggregated update message to region X is,
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Thus in one reporting event, total energy spent by all control
nodes in reporting data to the storage region hosting that
attribute is given by,
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The storage region receives queries from the sink with a

frequency fQ and incurs a query cost of
txDSQuery P

r

D
E

)stg,sk(
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The consequent reply from the storage region to the sink

incurs a cost of
txDSReply PN

r

D
E ξ

)stg,sk(
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The total energy expended in our scheme is given by,
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Thus the DCAAR scheme should be preferred only when

( )DSETotal
< ( )ATETotal

i.e.
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To validate our models of the aggregation tree and our
proposed scheme, we simulated a testbed of 1030 nodes
distributed randomly in an area of 630 × 630 square units. A
node at (x,y) was given an initial attribute value calculated by

the function )/)sin(1(20 RRZ += , where 5.022 ++= yxR .We

allowed 15 possible fluctuations in the sensed attribute, but the
decision to undergo a change was taken locally at each node
with probability 0.3. The magnitude of change was ± 1.8 and a
function of a uniformly distributed random variable. At the
end of the simulation we obtained an average of 340 nodes
crossing = 0.7 at each fluctuation and those that were over
= 22 averaged at 380. The other constant simulation
parameters are as described in Section VI. The calculated and
observed values are summarized in Table III and are in good
agreement thus validating our model. As predicted by
Equation (12), DCAAR has lower energy cost under these
conditions and is the preferred choice.

VI. SIMULATION RESULTS

Using Simjava, a discrete event simulator, we have
conducted simulations to compare our DCAAR scheme with
the aggregation tree (AT) algorithm of TAG [5].

A. Simulation Environment

In our study, we dispersed 1030 nodes randomly in a
square area of 630× 630 units, each with a transmission range
of 40 units to form a connected network. Each packet of 30
bytes is transmitted over a 20 kbps channel, incurring a cost of
0.81mW and 0.3mW for transmission and reception
respectively. To investigate the performance of the DCAAR
scheme, we split the area into 49 subregions, each of side 90
units. We measured the energy consumed by all the nodes for
different topologies. We have measured this by varying both
the rate at which queries are injected into the network by the
sink and the rate at which the sensed attribute shows a
variation in its magnitude. The control nodes in individual
subregions, as well as and the nodes in the aggregation tree try
and pack all available data in the fewest possible packets thus
maintaining an economy of transmission. For both schemes,
the sink is assumed to be at the center of the network. To
evaluate the best case of our scheme, we assume that the
attribute queried is stored in the central grid cell (near sink).
To measure the worst case performance, we consider the
situation when the sink (which is at the centre of the region)
queries an attribute that is stored in a grid cell further away
from the centre of the network.

TABLE III. ENERGY COST IN mJ

DCAAR Aggregation Tree
Simulation Calculated Simulation Calculated

19.7311 19.5864 26.351 21.073

B. Effect of Query Rate on Performance

We first keep the rate of fluctuations constant and vary the
query rate. From Fig. 4(a), we observe that the DCAAR
scheme shows marginal performance degradation at lower
query rates. As the sink injects progressively greater number
of queries per unit time, the DCAAR scheme performs
increasingly better than the AT algorithm. We reason as
follows. The cost of flooding the query down to the leaf level
of the AT and then retrieving the information essentially
requires O(n) transmissions. In our proposed scheme (and
more so for our considered topology), this is accomplished in
a single transmission between the control node in the storage
region and the sink, as is evident from the minimal DCAAR-
Query energy cost. There is however, a constant overhead of
updating the storage region for the nodes which show a
variation in the sensed attribute. This is reflected in the almost
constant DCAAR-Update energy cost. Fig. 4(b) shows results
for the scenario where the attribute stored at a subregion far
from the sink is accessed by a periodic query. Here the break-
even point is reached when the query rate is 22 (unlike 8 in the
best case) after which DCAAR performs much better than AT.

C. Effect of Fluctuation Rate on Performance

In this experiment (Figs. 4(c) and 4(d)), we vary the rate of
fluctuations while keeping a steady query rate of 20
queries/simulation time. We observe that with an increase in
the number of fluctuations, the DCAAR scheme is no longer
preferable to the AT scheme after the break-even point. The
AT performs at a steady energy cost as nodes, while sensing
the changed attribute values, see no need of reporting it unless
a query message is received. The minor increase in energy
cost of AT happens because, with increasing rate of
fluctuations, the number of attribute values more than the hard
threshold increase and hence more number of nodes report
data to the sink. On the other hand, the rapid fluctuation and
its associated cost in maintaining updated information in the
storage region strains the DCAAR scheme which explains the
steady increase in DCAAR-Update cost and hence DCAAR-
total cost. Even then, in the best case scenario (Fig. 4(c)), the
DCAAR scheme performs better than AT till the fluctuation
rate reaches a considerable value of 26 fluctuations /simulation
time.

VII. RELATED WORK

There have been different approaches for storing data in
sensor networks. Earlier sensor network systems stored sensor
data externally at a remote base station (External Storage) or
locally at the nodes which generated them (Local Storage).
Shenker et al. [8] proposed the Data-Centric Storage scheme
and have shown that DCS outperforms other approaches such
as External Storage and Local Storage under certain
circumstances. Ratnasamy et al. [7] have also proposed a
Geographic Hash Table (GHT) to hash events into geographic
coordinates. In DIFS [1], Greenstein et al. have designed a
spatially distributed index to facilitate range searches over
attributes, while Li et al. [6] have built a distributed index
(DIM) for multidimensional range queries of attributes.

µ)(ATDataE !!
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(Event-driven)
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Figure 4(a). Effect of Query rate (Best Case) Figure 4(b). Effect of Query Rate (Attribute far from sink)
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In this paper, we have proposed a data-centric storage
scheme that differs from the existing data-centric approaches
[1][6][7] in that it distributes attributes instead of specific
user-defined events. We reason as follows. If an attribute is
included in many events, then values for that attribute have to
be replicated and stored at different places in the network for
each individual event. In our proposed approach, the attribute
need not be replicated at multiple places and hence saves
communication cost involved in storing and replicating data.
Instead every attribute is stored at a predefined location within
the network such that attributes that are a part of the same
query are stored near each other to facilitate data retrieval.

VIII. CONCLUSIONS

The proposed DCAAR scheme is a data-centric storage
scheme for allocating attributes to a large-scale sensor network
depending on the correlations between them. We have
proposed a communication architecture that minimizes the
cost of maintaining and retrieving data from such a system and
have determined analytically the conditions under which the
architecture should be preferred. We have conducted
simulations that compare DCAAR performance with other
aggregation schemes. As a part of future work, we plan to
develop detailed protocols for query dissemination, data
update and data retrieval. We also need to ensure that these
protocols are fault-tolerant and perform load balancing.
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