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INTRODUCTION

Cognitive radio (CR) networks [1] are emerging
as a promising technology to improve the utiliza-
tion efficiency of the existing radio spectrum. In
CR ad hoc networks, the dynamic nature of the
radio spectrum and the distributed nature of
operations require the development of new spec-
trum-aware routing and resource allocation algo-
rithms. Since spectrum occupancy is
location-dependent, in a multihop path the avail-
able spectrum bands may be different at each
relay node. Hence, controlling the interaction
between routing and spectrum management
functionalities and addressing the concerns of
end-to-end reliable communication are of funda-
mental importance.

In this context, this article is intended to be a
resource for researchers interested in advancing
the state of the art in experimental research on
CR ad hoc networks.

Experiments in wireless networking in gener-
al, and with software defined/reconfigurable
radios in particular, are inherently complex, typi-
cally time-consuming to set up and execute, and
hard to repeat by other researchers. For these
reasons, simulation has been the methodology of
choice for researchers in the wireless networking
domain, and CR is no exception. However, there

is growing awareness of the fact that current
simulators make several simplifying assumptions
to model many essential characteristics of real
systems, such as substituting irregular transmis-
sion regions by unit disk graphs, capturing only
the statistical effect of multipath propagation
instead of actual ray-tracing, and assuming basic
on-off models for licensed user activity, among
others. It has also been argued that due to an
apparent degradation in scientific standards in
the conduct of simulation studies, simulation
results are often questionable and of limited
credibility [2]. This gap between simulated and
experimental results may lead to significant dif-
ferences between the behavior of the simulated
system and that of the real system. It is therefore
of fundamental importance to advance theoreti-
cal design and analysis of networking protocols
and algorithms in parallel with sound experimen-
tal validation. For such experiments to be com-
monplace, the cost to set up and maintain an
experimental testbed must be decreased, and a
consensus has to be reached among researchers
as to what should be the common requirements
of experimental platforms, in terms of means for
programming the devices, tools for collection
and statistical analysis of experimental data, and
techniques to ensure that motion is performed
accurately when necessary.

For the reasons discussed above, in this
article we review, discuss,  and classify the
existing experimental platforms and testbeds
for CR ad hoc networks to shed light on how
these platforms address the challenges of
experimental evaluation. In addition, we dis-
cuss their l imitations and highlight future
research challenges.

The remainder of this article is organized as
follows. In the next section we discuss the gener-
al architecture of a single CR device. The soft-
ware tools and operating systems running on
these devices are described in the following sec-
tion, while the underlying hardware platforms
are given next. We then describe the integration
of these devices in experimental testbeds. The
key challenges in this area and future research
directions are then summarized, and in the final
section we conclude the article.
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ARCHITECTURE OF A CR NODE

In this section we describe the architecture of a
CR device, discussing the key component block
and the factors that determine their design
choices. As illustrated in Fig. 1, typical existing
platforms are based on a split architecture,
where a reconfigurable generic radio device is
connected to a host, typically a desktop or lap-
top computer. The key resource allocation and
digital signal processing (DSP) operations are
undertaken on the host, which is connected to
the CR device through a high-speed connection
(e.g., USB or Gigabit Ethernet). The host con-
tains implementation of the communication pro-
tocol stack, which handles data at the packet
level, and of the physical layer (PHY) function-
alities. The output of the processing on the host
is a digital sample stream that is transferred to
the CR device for further processing.

RECONFIGURABLE BOARD
A typical CR device consists of a motherboard
with plug-in transceivers that permit incoming
radio frequency (RF) signals to be digitized and
generates outgoing RF signals from the digital
sample stream sent by the host computer. The
platform typically includes an embedded field-
programmable gate array (FPGA), allowing pro-
cessing in hardware of the samples on the ingress
and egress paths. Interchangeable daughter-
boards can cover different frequency ranges.
Digital/analog conversion is realized either on
the FPGA or on dedicated hardware. For exam-
ple, the Universal Software Radio Peripheral 2
(USRP2), described in detail later, mounts a
specialized 400 Msamples/s 14-bit digital-to-ana-
log converter (DAC) and a 100 Msamples/s 16-
bit analog-to-digital converter (ADC).

Clearly, DACs and ADCs may become per-
formance bottlenecks for the radio. Specifically,
the speed of the ADC determines how large a
bandwidth can be sampled instantaneously (for

spectrum sensing or decoding purposes), while
the performance of the DAC limits the analog
bandwidth of the transmitted signal. In addition
to this, the bus connecting DACs/ADCs to the
processing unit may also limit the effective data
rate and sensing capabilities of the radio. This,
along with frequency and capabilities of the pro-
cessing unit, may limit the complexity of process-
ing and resource allocation algorithms that can
be executed in real time to control the behavior
of the radio.

A soft-core processor may be implemented
on the FPGA, shown in the diagram as an
embedded processor, to handle internal board
operations (e.g., controlling arbitration on the
data bus). For example, in USRP2 a 32-bit soft-
core processor (AeMB) is implemented on the
FPGA and handles most of the internal USRP2
operation. Note that in the basic USRP2 config-
uration, the AeMB does not perform any DSP
functions; these are done purely in software in
the DSP RX and TX pipelines on the host.
Other products, such as the DM6446 DSP-Vir-
tex-4 FPGA-based software radio developed by
Lyrtech, have an 8–48 kHz stereo audio codec
implemented on the board itself. Thus, a simple
DSP co-processor may also be implemented in
software in the FPGA to aid various physical
layer tasks. Additionally, a CR platform will
embed fast access memory (on the order of a
few Mbytes), which can be implemented on the
FPGA itself; and larger low-cost memory for
long-term storage (e.g., through an external SD
card).

SOFTWARE PLATFORMS
User-friendly software platforms are critical for
easy and rapid device programming. As CR
research is highly interdisciplinary, drawing
from signal processing, networking, machine
learning, and other engineering and computer
science disciplines, the development of intuitive

Figure 1. Internal organization of a CR node.
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design and development tools for a diverse set
of users is a challenge. In CR the key function-
alities at all layers of the protocol stack, includ-
ing physical layer functions such as modulation/
demodulation, detection, coding, and filtering,
are implemented in software. The main time-
sensitive signal processing and communication
functionalities are written in a compiled lan-
guage, which allows faster runtime perfor-
mance, while a higher level language may
provide tools for interconnecting basic blocks in
a user-friendly fashion, or setting the configura-
tion parameters, and scenario information.
Specifically, for CR operation, the software
must also provide a rich set of signal processing
libraries, interaction with the hardware compo-
nents embedded in the hardware platform, and
easy extension and upgradeability. Higher-layer
functionalities, including medium access con-
trol, routing, and transport protocols, are imple-
mented separately from the physical layer
functionalities, and often run on a separate
host connected to the radio, as discussed in fur-
ther detail in the previous section.

In the following we describe the main existing
software frameworks for CR (Table 1).

GNU RADIO
GNU Radio is an open source project that pro-
vides a free software toolkit for developing a
software defined radio running on Linux on
standard computers or over Cygwin for the Win-
dows platform [3].

The programming environment is organized
around the principle of constructing a signal pro-
cessing graph that describes the data flow in the
software defined radio. This graph is executed in
an integrated runtime system. The vertices of the
graph represent signal processing blocks and the
edges are the data flow between them. Signal
processing blocks operate on data streams flow-
ing from a number of input ports to a number of
output ports specified per block.

GNU Radio frameworks are built by a com-
bination of Python and C++. The Python
code provides the signal processing graphs
that outline the order in which the main com-
ponent functions of the radio are executed,
the data flow, a graphical user interface, and
other non-performance-critical support to the
user. The main signal processing blocks are
written in C++, and glued together to the
Python code using a tool called SWIG. This
task can be simplified by using the GNU Radio
Companion or GRC, which provides a graphi-

cal user interface similar to that of Simulink.
The complexity of  these blocks can be
increased by hierarchically adding existing
primitives or integrating other hierarchical
blocks. This modular expansion facilitates easy
prototyping, aided by an extensive library of
signal processing routines (optimized filters,
fast file transfers [FFTs], equalizers), modula-
tion schemes (Gaussian minimum shift keying
[GMSK], phase shift keying [PSK], quadrature
amplitude modulation [QAM], orthogonal fre-
quency division multiplex [OFDM]),  task
scheduling, error-correcting codes (Reed-
Solomon, Viterbi,  turbo codes), and timer
maintenance, among others. User-initiated
development is further supported by allowing
the testing of the blocks in a simulated data
set, while maintaining the same program that
would need real RF hardware for its opera-
tion. Thus, the overall aim of this effort is to
give the user complete flexibility and reconfig-
urable support by moving the operation of a
radio into the software domain and as close as
possible to the antenna.

SOFTWARE COMMUNICATIONS ARCHITECTURE
The Software Communications Architecture
(SCA) is an open-source implementation-inde-
pendent framework for the development of soft-
ware defined radios initiated by the U.S.
Military. Similar to GNU Radio, the compo-
nents of a software defined radio are modeled
as interconnected blocks in a data flow diagram
with standard interfaces that allow easy linking
with user devices. SCA includes real-time
embedded operating system functions, and pro-
vides multithreaded support for all software
executing on the system. The framework is writ-
ten in C++/Python, and the different message
passing functions between blocks are undertak-
en by Common Object Request Broker Archi-
tecture (CORBA), with support for the Linux
operating system. The component-based struc-
ture in SCA allows easy reuse of these building
blocks across different radio platforms. One
such SCA-based commercially available plat-
form developed by Lyrtech allows for a power-
ful but small form factor radio supporting
0.2–2.0 GHz RF operation with integrated
WiMAX. The general operating environment
for the SCA defines a subset of the portable
operating system interface (POSIX) interfaces
that ensure software interoperability between
different systems. The use of CORBA hides
internal architectural details, such as the num-
ber and type of processors, the operating system
(OS), and other aspects of the radio configura-
tion. In the context of SCA, the term waveform
is used to define a radio, that is, a series of
transformations on the signal from the point of
its generation to its eventual transmission. The
framework controls each waveform, allowing
these transformations to be drawn from several
different sources, and yet managed and
deployed under a common set of rules. SCA
uses unified modeling language (UML), an
industry-wide standard, to graphically represent
the different software blocks and their intercon-
nections. Ideally, SCA is designed to run on any
underlying SCA compliant operating environ-

Table 1. Existing software, hardware-only, and hybrid device-level research.

Software Hardware only Hybrid

Academic
and
Military

MIRAI-SF [4]
GNU-Radio [3]
SCA/OSSIE [5]

BEE2 [7, 8]
WINC2R [9]
WARP [10]

Industry USRP and USRP2 [6] KNOWS [11]
SORA [12]
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ments with a minimal amount of changes to the
original code. Currently, the OSSIE software
(SCA-Based Open Source Software Defined
Radio) provides an implementation of a soft-
ware defined radio built over the SCA frame-
work assuming the presence of an underlying
USRP board. OSSIE provides software proce-
dures for narrowband and wideband sensing [5].
A major contribution of this project is a Graphi-
cal User Interace (GUI) tool that allows a
designer to create new waveforms using stan-
dard templates, and also generates the
C++/Python code that automatically handles
the interactions within the SCA and the links
with the CORBA middleware. Further signal
processing and modulation schemes, such as
QAM and PSK, or new test algorithms can be
added by the user.

MIRAI CR
EXECUTION FRAMEWORK

While GNU Radio and SCA are focused on
lower-layer functionalities, the MIRAI CR Exe-
cution Framework is designed to provide a full
CR emulation environment, including implemen-
tation of functionalities at all layers of the com-
munication protocol stack. The framework is
designed for large-scale implementations, and
provides a default implementation of TCP at the
transport layer and wireless LAN backoff imple-
mentation at the link layer, thus making it suit-
able for multihop experiments [4]. Moreover, its
multi-threaded structure allows handling of pack-
ets and events in parallel, unlike the ns-2 simula-
tor. A key feature of MIRAI is that it allows the
construction of a mixed simulated/emulated envi-
ronment, where a few nodes are mere software
entities (from the physical to higher layers), while
others may be actual devices. The various func-
tional components in the different layers of the
protocol stack are implemented as plug-in, which
leads to scalability. Moreover, as the simulator
has a UNIX-compatible communication stack,
using an actual hardware component at the phys-
ical layer simply involves replacing the plug-in
with the device to be tested as long as it uses one
of the supported standards. The CR-specific
physical layer has software commands for chang-
ing spectrum band, modulation, frequency, band-
width, and standards such as IEEE 802.11 a/b/g/e
and IEEE 802.16. The program logic for affect-
ing these changes is supplied by a user through a
separate plug-in.

EXISTING CR PLATFORMS

UNIVERSAL SOFTWARE RADIO PLATFORM

Several recently proposed devices and testbeds
for CR networks rely on the USRP open source
hardware platforms [6], which use the GNU
Radio software package. Developed and dis-
tributed by Ettus Research LLC, USRP is one of
the most popular commercial solutions used in
the design and implementation of software
defined radio systems. The URSP product family
consists of the motherboards (USRP and
USRP2), which contain an FPGA and inter-
changeable daughterboards. Together, they
bridge a controller host computer with one or
more antennas.

As shown in Table 2, the initial design of the
USRP has been significantly improved in the
USRP2 boards in terms of higher communica-
tion speeds (using Gigabit Ethernet as opposed
to 480 Mb/s over USB 2.0 for host connection),
better processing ability (larger FPGA including
implementation of an AeMB processor core),
and increased flexibility of prototyping. The
USRP platform family can be interfaced with
different daughterboards, which permits incom-
ing RF signals from a possible range of DC to
5.85 GHz to be digitized, and generates outgoing
RF signals from the digital sample stream sent
by the host computer. The platform includes an
embedded Xilinx Sparta 3-2000 FPGA, allowing
processing in hardware on the samples on the
ingress and egress paths. The USRP2 is endowed
with 14-bit digital-to-analog converters (DACs),
and 16-bit analog-to-digital converters (ADCs),
both significant advances over the earlier USRP.
The current configuration allows sampling por-
tions of the spectrum of approximately 25 MHz,
as opposed to 8 MHz for the previous platform.
Similarly, the Gigabit Ethernet interface to the
host computer allows handling signals of ade-
quate bandwidth in real time.

The USRP2 holds a single transceiver daugh-
terboard, and multiple USRP2s can be connect-
ed together to form a wide multiple-input
multiple-output (MIMO) system (up to 8 × 8).
Different daughterboards provide the USRP and
USRP2 with the appropriate RF front-end for
different frequency bands. In addition, a daugh-
terboard can be a single transmitter, a single
receiver, or a full transceiver. In Table 3 the fre-
quency bands of operation of the main daughter-
boards provided by Ettus Research LLC are

Table 2. Hardware differences between USRP and USRP2 [6].

Component name USRP USRP2

Analog-digital converters
(ADCs)

Number: 4
Speed: 64 Msamples/s, 12 bit

Number: 2
Speed: 100 Msamples/s, 14-bit

Digital-analog converters
(DACs)

Number: 4
Speed: 128 Msamples/s, 14 bit

Number: 2
Speed: 400 Msamples/s, 16-bit

RF bandwidth 16 MHz 100 MHz

Host connection USB2.0
Speed: 480 Mb/s

Gigabit Ethernet
Speed: 1 Gb/s
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summarized. Moreover, different custom-made
boards can be designed to match the specifica-
tions of the USRP and USRP2 boards.

HYBRID PLATFORMS
In this section we describe existing devices that
have both a hardware implementation and an
associated software framework specific to the
hardware. In all of these approaches, the basic
architecture uses an FPGA board, external
ADC/DAC modules, an implementation of a
processor core, and configurable RF front-ends
of varying bandwidths and center frequencies.
Additionally, the software component generally
supports the operation of the higher-layer proto-
col operations, such as MAC protocol imple-
mentations and enhanced support for networking
among multiple devices.

Kognitiv Networking Over White Spaces —
The KNOWS project is a collaborative industry
effort toward building a prototype CR device
[11]. The device itself has three components: a
host computer, a spectrum scanner, and a fre-
quency translator between the 2.4 GHz industri-
al, scientific, and medical (ISM) and 512–698
MHz UHF bands. The host maintains the con-
trol plane, and contains the implementations of
the MAC and higher layer protocols. It is
equipped with a standard WiFi card, and the
translator downconverts the output signal to the
UHF band and vice versa for the incoming sig-
nals. As each channel is defined as 6 MHz wide,
the channel bandwidth of the output signal is
limited to 5 MHz so that they can be contained
within the standard UHF TV channels 21–51.
However, these individual channels can be aggre-
gated to form 5, 10, 15, and 20 MHz channels
when contiguous channel vacancies are detected
in the UHF band. The spectrum scanner is

implemented in a USRP board [6] having a
50–8600 MHz TVRX receiver-only daughter-
board. The scanning is set to intervals of 30 s as
the TV transmissions are unlikely to exhibit sud-
den fluctuations. Apart from these main compo-
nents, the KNOWs platform also has a GPS
module in the event that a database of the loca-
tions of TV stations and transmission towers is
available. The platform also includes an x86
embedded processor that controls the radios,
obtains MAC layer control packets from the
host, and parses them into instructions for con-
figuring the RF hardware, and conversely, aggre-
gates the raw received signals into packets that
can be operated on by the host.

Software — The software implements algo-
rithms for scanning the spectrum, detecting bea-
con signals/data packets sent by other CR users,
and detecting the presence of incumbents; these
tasks are complicated by multiple channel band-
widths. The spectrum usage history is built over
time allowing improved decisions, and new time-
domain techniques for detecting the start-stop
time of data packets are proposed. The latter are
especially needed as the channel bandwidth used
by the neighboring CR users may not be known
in advance, rendering the classical FFT-based
techniques infeasible. A MAC layer is developed
in [11] that allows the formation of a WiFi-like
network architecture in the UHF band, with mul-
tiple CR users linked to a single access point.

Winlab Network Centric CR — The WiNC2R
hardware is composed of a baseband processing
module and an RF front-end. The physical layer
processing is performed by a set of hardware
accelerators, and the less computationally inten-
sive functions at the MAC and higher layers are
performed by an array of data processors. A
unique feature of this platform is that the physi-
cal layer parameters and the MAC functionality
can be changed on a per-packet basis, thereby
allowing rapid response to sudden changes in
the condition of the network. The incoming sig-
nals are digitized at a rate of 125 Msamples/s
before further processing by a Xilinx 4FX12
FPGA that resides on the board. The settings of
the transmission parameters, including frequency
selection, and alternating between transmission
and receiving functions are controlled by the
instructions residing in the FPGA. The RF fron-
tend is highly configurable with a baseband of
0–500 MHz, and up-conversion is supported in
the range 30 MHz to 6 GHz. Moreover, multiple
(virtual) OFDM-based radio standards are sup-
ported that can be used up to speeds of 10 Mb/s.
The architecture in WiNC2R follows a virtual
flow pipeline concept, in which a wide range of
functions can be inserted in the data flow, there-
by allowing the actual selection of their sequence
to be undertaken at runtime. Unlike fixed
sequence operations that must adhere strictly to
a predecided order of function calls and timing
requirements, the proposed approach allows
greater flexibility by changing the nature of the
operations on a per-flow basis. Additional syn-
chronization mechanisms ensure that the func-
tional units are shared without overlapping
between different flows.

Table 3. Available transmitters and receivers for the USRP family [6].

Component name Function Frequency band

BasicTX Transmitter 1–250 MHz

BasicRX Receiver 1–250 MHz

LFTX Transmitter DC–30 MHz

LFRX Receiver DC–30 MHz

TVRX Receiver 50–860 MHz

DBSRX Receiver 800 MHz–2.4 GHz

RFX400 Transceiver 400–500 MHz

RFX900 Transceiver 800 MHz–1 GHz

RFX1200 Transceiver 1.15 MHz–1.4 GHz

RFX1800 Transceiver 1.5–2.1 GHz

RFX2400 Transceiver 2.25–2.9 GHz

XCVR2450 Transceiver 800 MHz–2.4 GHz
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Software — The WiNC2R software uses GNU
radio [3] as an underlying base for developing
the physical and MAC layers. The prototyping of
the higher layer functions is based on the
CogNet software package [9], which provides the
control and management planes, support for col-
laborative physical layer functions, dynamic spec-
trum coordination, adaptive MAC protocols,
clustering and group formation, and cross-layer
design. Most important the processing flow is
driven by events rather than by the program
counter as in the stored program paradigm. The
events driving the flow can be time- or data-
based, and both can be generated by the envi-
ronment or as the result of internal processing.
CogNet also provides for a global control chan-
nel that could be used for bootstrapping, device
discovery, addressing, and data path setup,
among other functions in a CR ad hoc network.

Berkeley Emulation Engine 2 — The BEE2 is
a generic multipurpose emulation platform that
supports up to 500 giga-operations per second by
distributing the load among its component
FPGAs. The BEE2 can be coupled with external
hosts, and independently designed radio modems
via high-speed optical connects. The BEE2 hard-
ware architecture has a computational module
and a configurable RF frontend [7, 8]. The com-
putational module consists of five Vertex-IIPro
70 FPGAs, four of which are used for process-
ing; the fifth provides the control plane with
intra-FPGA connection links supporting up to
20 Gb/s. A full IP protocol stack that allows easy
interfacing with external computers is provided
on the control FPGA. Thus, the platform emu-
lates a virtual FPGA of five times the capacity of
a single one. Each FPGA has access to 4 Giga-
byte of memory and embeds a PowerPC 405
core for facilitating fast reconfiguration of the
communication modules. These FPGAs can con-
nect to the external world using serial multi-
gigabit interfaces. For CR experiments, a RF
front end, fully programmable over a range of 80
MHz, in steps of 20 MHz channels, in the 2.4
GHz ISM band, is developed that can be con-
nected to the BEE2. An additional Vertex-
IIPro20 FPGA on the radio front end is used to
implement control logic for the radio, maintain-
ing accuracy of the analog components by peri-
odic calibration and real-time access to registers
onboard the radio. The use of optical cables
connecting the processing components on the
FPGA to the RF frontend allows greater physi-
cal separation between the two and, consequent-
ly, better isolation from self-induced
interference.

Software — The BEE2 software uses the
BORPH OS, which extends a standard Linux
kernel to view the different FPGAs as a single
unified computational resource. This user pro-
cess on BORPH could be either a program that
is running on a dedicated processor or a set of
instructions that are executed through hardware
configuration on the FPGA. The resources uti-
lized by this OS to spawn hardware processes
can range from an entire FPGA to a predecided
region within the FPGA. Furthermore, the
UNIX file system abstraction allows users to

interact with the FPGA at runtime without man-
ually constructing software interfaces. Further
support in implementing key blocks is provided
by allowing their design to be undertaken in
Simulink and, finally, compilation and mapping
to the FPGA on the BEE2 through a tool devel-
oped using Xilinx.

SORA — The SORA platform from Microsoft
Research allows the implementation of higher-
layer wireless protocol stacks that require highly
precise timing, not possible through USB or
Gigabit Ethernet interfaces linking the wireless
module to the host computer [12]. The hardware
is composed of a radio control board (RCB) that
bridges an RF front-end with the host over the
high-speed and low-latency PCIe bus. With this
bus standard, the RCB can accommodate trans-
fer speeds up to 16.7 Gb/s, and the specialized
support for multicore processors residing in the
host allows the digital signal processing to be
undertaken completely at the host. The IEEE
802.11a/b/g PHY and MAC in the 2.4 and 5
GHz bands have been tested using this platform.
The cost of the RCB is comparable to the exist-
ing USRP2 platform (RF frontends can be either
WARP radio boards or USRP daughterboards),
although additional host requirements, such as
workstation-based PCs with at least a PCIe x8 or
x16 slot, are specified.

Software — SORA has two key features that
greatly expedite software processing tasks: First,
the physical layer adaptation (e.g., choice of
modulation, and spreading code among others) is
undertaken via precomputed looup tables instead
of deriving the optimal value through calcula-
tions. This allows the operation to be fast, and
leverages the low-latency caches present in the
host processors. It also makes full use of the
instruction sets present in existing processors,
such as single instruction multiple data (SIMD)
to further accelerate the processing. Second,
SORA provides a new kernel service called as
core dedication that allocates host processor cores
exclusively for real-time tasks, which guarantees
the availability of computational resources.
SORA requires Windows XP for its use.

WARP — The wireless open access research
platform (WARP) board, developed at Rice
University, has a Xilinx Virtex-4 FPGA, with the
provision of supporting up to four daughter-
boards with RF front-ends [10]. Multiple WARP
boards may be connected to the host PC via an
Ethernet switch. An interesting deviation from
the USRP-based architecture is the ability to
construct the baseband samples in MATLAB
and then store them in buffers on the FPGA on
the transmitter node before beginning the trans-
fer. A trigger signal from the host can then begin
the transmission of the samples to the receiver
side over the wireless channel. The WARP board
supports 40 MHz of bandwidth independent of
the carrier frequency. The two embedded Pow-
erPC processors provide sufficient onboard com-
putational power, while the 328 18-kbit block
RAMs allows for fast access of data from within
the FPGA. The onboard processing ability of the
WARP platforms allows some time-critical tasks
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to be completed within the board itself, facilitat-
ing time-sensitive operations discussed later.

Software — The key benefit of using WARP is
ease of prototyping enabled by the WARPlab
framework. This framework provides the soft-
ware that allows controlling and programming
the individual nodes from within the MATLAB
workspace running on the host computer. The
WARPlab framework itself has three compo-
nents: The platform studio generates the imple-
mentations of the network protocols (assumed to
be input in C/C++). The system generator takes
the MATLAB-specified physical layer algo-
rithms, and converts them to a hardware model
for the FPGA implementation. Finally, it has a
low-level HDL and ASIP development module
that exposes the internal hardware components
to the higher-layer MATLAB routines. Exten-
sive software support is also available for WARP
toward advanced networking functionalities,
including carrier sense multiple access (CSMA)
based protocols, spectrum management, MIMO,
cooperative communication, power control, and
energy-efficient transmission through published
works and downloadable code.

TESTBEDS
There exists a high level of heterogeneity in the
design of practical CR networks. We character-
ize testbeds in the following way based on the
devices used, communication system, and level
of heterogeneity:

•Accessibility: The overhead, in terms of
both the material and manpower required for a
thorough experimental evaluation, is often a
detrimental factor in building testbeds. Several
institutions provide external interfaces, where
the individual devices of the testbed can be pro-
grammed by a user remotely, often over the
Internet. We refer to this as open access, and
strongly advocate this as the best strategy for
undertaking reproducible results. Moreover, this
approach extends support to the research com-
munity, who can make use of an existing invest-
ment in infrastructure.

•Device hardware: There are commercially
available device types, as well as custom designs
that may support varying number of transceivers,
processors clocked at different instructions/per
second, frequency ranges, and bandwidth that
are supported by these transceivers and antenna
types, among others. Ideally, the testbed should
be highly reconfigurable in terms of dynamic
spectrum selection and capable of wideband
sensing over large ranges.

•Scale: Depending on the resource con-
straints, testbeds vary in the number of nodes.
Our survey points to a large variation, ranging
from around a dozen to nearly 50 nodes. Specifi-
cally, large testbeds allow for realistic testing of
the effect of the interference caused by intra-CR
network transmissions on licensed user detec-
tion, and the performance of spectrum sharing
in the detected vacant bands.

•Heterogeneity: Most of the existing testbeds
are composed of homogenous devices, and each
node has similar communication and processing
capabilities. However, real-world networks are
likely to be highly diversified in these respects.
Hence, devising a compatibility plane is needed,
where individual nodes offer additional and
often distinct capability over a minimum accept-
able feature set. Such testbeds may also be used
to test the coexistence of CR networks managed
by different entities in a common spectrum pool.

•Protocol support: Given the high degree of
reconfigurability in CR devices, developing a
user-modifiable protocol stack that can run on
the devices is a challenge. When research efforts
are undertaken at each layer, basic implementa-
tions of the other protocols layers, not in the
scope of the work, must be present. As an exam-
ple, TCP implementations over CR may rely on
spectrum sensing information from the physical
layer. Moreover, the basic structure should be
easily modifiable, as there has been an increas-
ing trend toward developing cross-layer tech-
niques that integrate and utilize the complete
spectrum as well as network information.

In this section we describe the key features of
existing testbeds with respect to the above char-
acteristics, and point out the general research
challenges that exist.

EXISTING TESTBEDS AND IMPLEMENTATIONS
In the following we describe some of the main
experimental deployments of CR testbeds to
date (Table 4).

Virginia Tech CR Network (VT-CORNET) —
This highly reconfigurable testbed allows the
evaluation of independently developed CR
engines, sensing techniques, applications, proto-
cols, performance metrics, and algorithms. The
current and planned testbed capabilities include
48 USRP2-based nodes, spread over four floors
of a building and equipped with a custom-made
daughterboard spanning the frequency range 100
MHz to 4 GHz. Key differentiating aspects of
this testbed are the use of the Software Commu-
nications Architecture (SCA) [5] software frame-
work that assumes USRP nodes at the physical

Table 4. A comparison of the currently implemented multihop CR testbeds.

Testbed name Location Access Number of nodes Hardware Frequency range Protocol support

Emulab Univ. of Utah Open 25
10

USRP
USRP2

800–1000 MHz
2.4 & 5 GHz

CSMA/CA
IP-addressable

VT-CORNET Virginia Tech Open 48 USRP2 100 MHz–4 GHz In-house cognitive/policy engine

ORBIT Rutgers Univ.
Winlab Open 11

12
USRP
USRP2

50–2.2 GHz
2.4 & 5 GHz

COGNET global
MAC
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layer, and provides the support for generating
and visualizing a range of radio configurations
called as waveforms.

Open Access Research Testbed for Next-
Generation Wireless Networks — The
ORBIT testbed has a combination of USRP (11)
and USRP2 (12) that are externally addressable
and placed in a grid-like arrangement, leading to
a variety of standard topologies. For the USRP
boards, two daughterboards are interfaced, one
with a sensing-only range of 50–2.2 GHz, and
another capable of sending and receiving signals
in the 2.4 and 5 GHz ISM bands. Only the
USRP2 has the ISM band support, and powerful
quad-core host machines that fully use the
increased communication speeds enabled by the
platform. Apart from the USRP there are a few
other FPGA-only platforms but they require the
external user to have Matlab/Simulink and a Xil-
inx ISE license to work with these platforms.

The ORBIT testbed allows both controlled
testing on an emulator as well as field experi-
ments, and the execution code must be uploaded
on the ORBIT server. Users then make a
description of the properties of the networking
protocol to be tested, such as packet size, trans-
mission rate, and a list of the applications that
must be installed on the nodes. The next stage
involves assigning certain nodes protocol-specific
roles, and addressing the handling of the dynam-
ically changing properties based on different net-
work conditions observed during execution of
the experiment. Moreover, the ORBIT Measure-
ment Framework (OML) provides a library for
logging results in a relational database for offline
analysis.

Emulab — Emulab is an open access testbed
that has its center at the University of Utah and
several branches spread over the world. It is
widely used as an educational emulation tool as
well as for research. Currently, CR experiments
can be run on the USRP boards, with 13 nodes
each having two 2.4 GHz transceivers, and 12
additional boards operational over the 800–1000
MHz range. Newer expansions involve 10
USRP2 boards using the 2.4 and 5 GHz bands,
with a projected total number of USRP2 nodes
of 30 in the near future. Emulab has several
facilities to automate network actions, such as
rebooting, providing routes between a given
source-destination pair, creating batch experi-
ments, and using supported OSs as well as cus-
tom OS images, among others. For experiments
with a very large number of nodes, typically seen
in CR ad hoc networks, a multiplexed virtual
node implementation is provided that allows the
use of an increase of 10 over the number of
physical machines.

RESEARCH CHALLENGES AND
ARCHITECTURAL CONSIDERATIONS

From an architectural point of view, the distribu-
tion of functionalities across the processing units
significantly impacts the performance, flexibility,
and ease of reprogramming of the CR. More-
over, as the burden of processing is moved to

software, which is typically slower than hard-
ware-only operation, the design must also be
able to successfully accommodate time-critical
functions of the protocols. We describe some of
these challenges and solutions using the widely
used USRP family of boards as an illustrative
example.

NEED FOR MOVING TIME-CRITICAL TASKS TO
FPGA HARDWARE

To achieve a high level of flexibility and repro-
gramming, the USRP places the majority of pro-
cessing (i.e., modulation) on the host CPU,
where the functionality is easy to modify through
a high-level language (referred as host-PHY in
[13]). However, increased performance can be
achieved by implementing low-level processing
in the radio hardware on the FPGA. For exam-
ple, this architecture is the base of the WARP
platform, which places the PHY and MAC lay-
ers on the radio hardware [10]. This approach is
also referred to as NIC-PHY [13].

Similarly, MAC functionalities can be imple-
mented either near the radio hardware for per-
formance or near the host for flexibility.
Experiments on USRP radio report that round-
trip times between the device driver on the host
and the FPGA is about 300 ms for 4 kbytes of
data, with relatively modest jitter [13–15]. The
roundtrip from GNU Radio is about double, but
with significantly more jitter [13]. As a result, a
host-based MAC protocol will not be able to
precisely control packet timing or implement
small, precise interframe spacings, which will
hurt the performance of basically each and every
existing MAC protocol. Hence, time-critical
radio or MAC functions should not be placed on
the host CPU. No latency measurements are
currently available for the USRP2. While the
USB connection has been replaced by a GbE
link, our preliminary measurement experiments
reveal a latency between the host and radio
transmission on the order of milliseconds. In
particular, we measured a carrier sense delay of
2.1 ms with variance 7 ⋅ 10–7 over 1000 measure-
ment experiments. This is still certainly inappro-
priate for accurate MAC timing, which requires
a precision in the order of microseconds. In
addition, the host-to-host latency on a point-to-
point link is approximately 5.2 ms with variance
0.4 ⋅ 10–6.

SPLIT MAC DESIGN WITH
HOST AND FPGA IMPLEMENTATIONS

While approaches based on implementing core
MAC functionalities on FPGAss are possible, at
the expense of cost and flexibility, different
approaches may be possible. Key time-critical
MAC functionalities should be implemented on
the radio hardware, particularly precise schedul-
ing in time, carrier sense, and backoff, while try-
ing to maintain the flexibility offered by a
high-level programming language. In fact, while
it would seem natural to implement these on
FPGAs, the available space on an FPGA is lim-
ited, and FPGA programming requires a steep
learning curve and skills that may not be avail-
able to networking researchers. An alternative is
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to implement time-sensitive functionalities on
soft-core processors on the FPGA. A soft pro-
cessor is a CPU developed using logic synthesis
that can be implemented in a semiconductor
device containing programmable logic such as an
FPGA. In this way the FPGA emulates, using
logic circuitry, a processor that can be used con-
ventionally. Currently, there are a number of
soft cores available on the market, such as
MicroBlaze by Xilinx, Niosr II by Alterar,
LEON3 by Aeroflex Gaisler, and OpenRISC
1200 and AeMB from OpenCores. AeMB is a
32-bit reduced instruction set computer (RISC)
architecture soft processor core with 32 general-
purpose registers, an arithmetic logic unit
(ALU), and an instruction set which is very simi-
lar to the RISC-based DLX architecture. The
MicroBlaze soft processor has been implement-
ed with an IEEE-754-compatible single-precision
floating-point unit (FPU), which connects direct-
ly to the MicroBlaze instruction execution
pipeline and is clocked at 50 MHz, thus enabling
precise control with a granularity of 20 ns.

The core time-sensitive MAC functionalities
can then be implemented in a high-level lan-
guage. In this way, one can keep the advantage
of high-level language constructs, while obtain-
ing the performance gains given by implementa-
tion of time-critical functionalities close to the
radio. Split MAC design can also be implement-
ed by using hard CPU cores available in some
platforms. This approach is, for example, used in
WARP. Alternatively, the host CPU may be
connected over high-speed serial buses (as is the
case for SORA and WINC2R).

CONCLUSIONS
We have presented a thorough classification and
survey of existing software and hardware tools
for experimental evaluation of CR ad hoc net-
works. We believe that support for wide spec-
trum sensing/transmission abilities at the RF
frontend, embedded and reconfigurable process-
ing ability through flexible FPGA programming,
prototyping support by using graphical tools, and
scalability are critical considerations for device
design. Moreover, the challenges involved in
integration of these platforms to form multihop
networks are discussed, and the major efforts for
large-scale testbed implementations described.
Experimental evaluation is undoubtedly com-
plex, especially in highly dynamic CR ad hoc
network scenarios. However, there is a visible
need for testbeds to successfully and convincing-
ly demonstrate new ideas in this nascent area of
research.
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