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Abstract—Sudden spectrum demands may occur in dense and
congested cities, which stress the communication infrastructure.
At these times, identifying alternate spectrum bands through
cognitive radio (CR) technology will allow users to maintain
connectivity and relieve data congestion in the unlicensed bands.
However, deployment of the CR networks must be preceded by
accurate simulation of these networks, given the high infrastruc-
ture costs involved in their installation. Moreover, CR protocols
are often cross-layered, which cannot be trivially implemented in
off-the-shelf hardware. This paper proposes a framework for the
network simulator 3 (ns-3) that is suitable for large networks. Our
approach introduces several CR capabilities, such as spectrum
sensing, primary user detection, and spectrum hand-off. Our sim-
ulator demonstrates improvements in execution time and memory
usage, when compared to the earlier versions implemented for
the ns-2 environment. This paper is accompanied by the release
of the full source code for further research and improvement.

I. INTRODUCTION

Smart cities of the future will rely on the presence of
ubiquitous wireless connectivity to empower its power grid,
transportation systems, emergency responders, and the general
public. The need to accommodate high bandwidth content
becomes more acute in congested areas, and when a special
event, such as a sports game, is planned. Moreover, urban en-
vironments offer additional challenges caused by propagation
effects in certain portions of the spectrum, due to shadowing
and reflection from tall man made structures. Cognitive radio
(CR) offers the means to alleviate the spectrum shortage by
adapting to the spectrum availability over multiple different
bands, including TV frequencies, going beyond the unlicensed
channels. CR enabled devices can automatically sense the
licensed channels and infer activity of the Primary Users (PUs)
in these bands. If multiple such licensed channels are available,
CRs make intelligent spectrum switching decisions based on
a high level policy.

When planning the deployment of CR networks or testing
a new protocol, researchers face uphill challenges given the
challenging environment in which these networks operate. The
CRs must quickly determine which licensed channels in the
city are available, and make use of this spectrum before the
PU reclaims it. Accurate protocol operation is critical, as any
prolonged use of the channel raises concerns of interfering
with the activities of the PUs. This concern directly translates
to meticulous testing of the protocol or networking concept
in a controlled environment. Given the costs of purchasing
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multiple software defined radios and deploying them in a
city, which will serve as the hardware building blocks of CR-
enabled smart city network, and the time investment in writing
and deploying code in them, accurate computer simulation
often becomes the methodology of choice.

While several commercial simulators exist, such as OP-
NET [1], which can capably simulate heterogeneous networks,
our focus in this work remains on affecting improvements
for open-source use. In summary, the main challenges in CR
network simulation are as follows:

¢ CR protocols are generally cross-layered. Any change
in one layer, such as spectrum sensing duration at the
physical layer (PHY), has direct impact on the decisions
made in the upper layers of the protocol stack, requiring
extensive code changes throughout the stack.

o The testing time increases dramatically with the complex-
ity of the protocol. Owing to the large number of variables
that can be controlled, identifying the dominating factor
that impacts the environment to the greatest possible
extent may force large number of costly trial runs.

o The inter-dependence of the protocol layers requires
network architects to implement more than one layer.
For e.g., spectrum sensing at the physical layer (PHY)
can impact the TCP throughout and its interpretation of
congestion. Thus, the expertise required to simulate CR
networks effectively is more than conventional wireless
networks.

o New functions unique to the area of CR, such as spectrum
sensing, spectrum hand-off and licensed or primary user
(PU) detection need to be embedded in the simulator.

This paper is focused on providing the first cognitive radio
extension to the network simulator 3 [2] or ns-3, which
is a discrete event driven simulator. It is suitable for large
scale simulations, which reflect better the practical, city-wide
deployments. Moreover, ns-3 simulator is poised to replace its
widely popular predecessor, network simulator 2 or ns-2 as it
several advantages: (i) it has a new core written in C++, (ii) it
is geared for wireless communications, (iii) it offers mobility
schemes that are crucial for realizing vehicular networks that
will play a role in smart cities, (iv) it has an organized modular
architecture that is expandable, (v) it includes intuitive and
extensive documentation via the html Doxygen [3] interface,
and (vi) the same ns-3 code can be easily adapted to work in
real devices [2]. Additionally, several more accurate highway



mobility extensions such as [4] can also be incorporated in the
simulation scenarios, thereby reflecting the road layouts that
actually exist.

Despite the clear superiority of this new simulation plat-
form, ns-3 lacks implementation support for CR networks.
To bridge this gap, several changes are required in various
network layers in ns-3. For example, a device needs mul-
tiple wireless interfaces to transmit, receive and negotiate
with neighboring nodes. The PHY need to be able to sense
and detect PUs, the medium access control (MAC) needs
to decide and initiate hand-off to another available channel
when a PU is detected, and the routing protocol needs to
exchange the neighboring nodes’ current listening channel.
Based on the recent Federal Communications Commission
(FCC) mandate [5] that requires CRs to use a centralized
spectrum database, the simulator will have to also incorporate
such querying capabilities to identify the available channels
using these databases.

Our main contribution is to fully realize the first CR
extension for ns-3 that has the following features:

« It provides CR capabilities at the different network layers
such as sensing, PU detection, channel hand-off and
decision making.

o It incorporates the ability to query a database to obtain
PU activity results.

« It has the ability to simulate cognitive with non-cognitive
legacy wireless nodes in one test environment.

o It includes seamless support for multi-channel and multi-
radio node architectures.

o It provides new application programming interfaces
(APIs) to expose the creation of these node-level and
network-level features without advanced code changes. It
comes with extensive documentation through Doxygen.

« It allows studying the overhead, performance, and com-
parison with an existing extension of CR in ns-2.

o It is accompanied by the release of the full source code,
with additional guides on how to compile and run trial
examples.

The rest of this paper is organized as following: Section II
discusses the existing network simulators, and their utility in
implementing work for CR networks. We describe the model
of our proposed approach in detail in Section III, followed
by the proposed changes to the networking layers in ns-3.
Performance evaluation studies are presented in Section IV,
and finally Section V concludes the paper.

II. RELATED WORK AND BACKGROUND

To the best of our knowledge, no previous CR implemen-
tation exists for ns-3. There are, however, few modules for
CR that has been built for other simulators. Cognitive Radio
Cognitive Network (CRCN) [6] is a simulation framework
designed for ns-2 that provides multi/single radio and multi-
channel support per node. It provides APIs that return infor-
mation, such as the current noise or traffic conditions at a
given channel, and provides a mechanism for channel hand-
off. CogNS [7] is another extension for ns-2 that allows one

network interface per node that is able to sense PU activity, and
defer to another free channel based on a proposed spectrum
decision algorithm. Nodes created in this environment cannot
incorporate multiple radios per node. [8] provides a CR
simulation extension for OMNeT++ [9]. It provides support
for multiple interfaces per node, and is focused on evaluating
CR MAC layer protocols.

[10] is a simulator written in C++ for CR networks. The
proposed simulator offers a modular approach that provides
a full network layer stack. Because this work has not been
extensively tested by the general networking community, this
simulator involves some overhead in porting the well es-
tablished protocols in changing environments. For e.g., for
a researcher interested in simulating CR networks with an
alternate MAC, such as a different 802.11 standard, the effort
required is prohibitive. As compared to this, other popular
simulators such as OMNet++, ns-2 and ns-3 already provide
a wider user-base and support community.

The work described in this paper uses the ns-2 CRAHN ex-
tension in [11] as the starting point. This earlier CR extension
provides three network interfaces per node; a control interface
to exchange control information between neighboring nodes,
a receiving and transmitting interface. The CR module also
incorporates hand-off and sensing capabilities at the PHY and
MAC layers. It provides for PU detection mechanisms based
on a PU activity model table that is loaded in the simulator
a-priori. Our work, while based on this extension, has the
following key differences: all the work that is proposed in this
paper is based on the new ns-3 simulator, which (i) requires
extensive code change, (ii) provides dynamically adjustable
sensing/hand-off times that can be configured from the com-
mand line, (iii) is able to include cognitive and non-cognitive
interfaces in one node, and (iv) is able to mix cognitive and
non-cognitive nodes in one test environment. The simulation
extension we propose can also incorporate a larger number
of cognitive interfaces and/or nodes compared with ns-2 (in
the order of thousands). We also design a different simulation
architecture, composed of a spectrum manager block that hides
or masks the inner CR API calls, leading to an organized
modular approach.

Overall, our proposed extension provides easy access to the
specialized CR functionalities compared to other existing sim-
ulators through APIs, offers flexible CR and non-CR nodes to
coexist, and incorporates advanced abilities, such as querying
the recently mandated FCC database to infer PU activity. Our
work aims at realizing a complete CR simulation platform to
save time and resources for CR researchers who are either
forced to write the entire CR software stack or embark on the
costly enterprise of purchasing multiple real devices.

IITI. Ns-3 SIMULATOR MODEL FOR CR

In this section, we present the architectural model of our
proposed ns-3 extension. We first describe the building blocks
of the extension, followed by an explanation of the needed
changes at various network layers for a given node.
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A. Building blocks for the simulator

The typical functions of the CR node, follow the essential
stages of Spectrum Mobility, Spectrum Sharing, Spectrum
Sensing and Spectrum Decision, as described in the cognitive
cycle described in [12]. As seen in Figure 1, these operations
may occur one after the other, moving the CR node from
one operational stage to the next. We use a similar approach
to design the ns-3 simulator, by implementing each of
these constituent blocks of the cognitive cycle, as shown in
Figure 2. The spectrum management global block serves as
a black box to the other modules in ns-3. Different layers
in the network simulator keep a reference to the Spectrum
Manager instance and tie their cognitive functionality via
exposed APIs and hooked listeners. An example of such APIs
are startSensing(), startHandoff (channel),
isSpectrumFree (channel), alertNeighbors().

Internally, the Spectrum Manager block contains several
submodules that map to the cognitive cycle, which are de-
scribed next.

o Spectrum Sensing/Database Query. This block is re-
sponsible for checking whether a PU exists in a given
channel within a specified period of time. It infers the
PU activity from a static PU Database that is loaded
before the simulation starts. This submodule can be used
to either (a) mimic sensing with a given probability
of sensing error P,,.., or (b) query an FCC approved
database to determine the PU activity. The PU database
that is loaded into the simulator is a text file that defines
the number of PUs, their current occupied channel, the
transmission power to determine the range, and a list
of on (PU,,) and off (PU,ss) times. A researcher can
create and load this text file with any given PU,, and
PU,;y distributions such as normal or exponential.

o Spectrum Decision. In this block, several policies are
implemented. First, a policy in incorporated to determine
whether a hand-off should be performed based on sens-
ing/querying results. Second, a policy that determines to
which channel a hand-off should happen is written. Note
that these policies are extensible: One can implement
different and independent policies, or extend the existing
ones. A global repository is linked to this submodule
which hosts current occupied channels by all CR nodes in
the simulator. This can be used, for example, to determine
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Fig. 2. The main building blocks of the proposed extension

the least occupied channel that a node should switch to
to guarantee desired Quality-of-Service (QoS).

o Spectrum Mobility. This submodule initiates the hand-
off protocol in the current node. It is tied directly to the
PHY layer in the ns-3 node which will be discussed later
in Section III-B.

o Spectrum Sharing. This submodule uses the built-in
carrier sensing MAC 802_11 standards in ns-3 to make
sure that the available spectrum is shared in a collision-
free manner between the CR nodes that chose to transmit
on this same channel.

These sub-blocks are linked internally whenever a given
API in the Spectrum Manager block is invoked. For example,
to initiate sensing, a researcher may invoke a call to the
startSensingAndSwitchIfNecessary () API from
any arbitrary network layer. The Spectrum Sensing block will
then initiate a look-up via the PU Database, call the Spectrum
Decision block once sensing is performed. If the Spectrum
Decision block decides to switch to a new free spectrum,
it initiates a hand-off via a call to the Spectrum Mobility
block. The same network layer that invoked the call will then
be notified via a listener once this cycle is completed and
transmission can be resumed. This can be used, for instance,
in a transport layer protocol where the transport protocol needs
to determine when to resume the data flow [13].

B. Layer-specific modifications to ns-3

In this section, we detail the needed changes to each layer
of the protocol stack for a given CR node in ns-3. Figure 3
depicts an overview of these changes. As can be seen, the
proposed CR extension exposes several APIs and listeners to
all the networking layers. We also make use of ns-3 tagging
feature. The method to ‘tag’ a packet with some information
helps to determine that packet’s internal routing in a given
node, thereby avoiding the costly overhead that would ensue if
said information was to be integrated into the packet’s header
instead. More details on this feature and how it is used will
be discussed, as we explain the changes to each of network



layers.

1) All layers up to the transport layer: No changes are
proposed to these layers. However, all the Spectrum Manager’s
APIs and listeners are exposed to these layers so a network
researcher working on a CR application, for example, can
make use of the CR features of the node by calling the
respective APIs in the Spectrum Manager.

2) Transport layer: Our framework modifies this layer so
that any packet that is generated here will be tagged as a
DATA packet. This information will be processed by the
lower layers to determine the correct routing of such packets.
This change affects all transport layer protocols defined in the
simulator such as TCP, UDP, and potentially any new transport
protocol that a researcher might be interested in implementing.

3) Network layer: For CRs to work in an ad-hoc topology,
some information must be exchanged between neighboring
nodes to determine listening channel of each member of the
network. We extend the information carried in the packets of
the AODV protocol [14] to include the current listening chan-
nel of each node. This information will be passed along with
every HELLO, RREQ and RREP messages. Every packet
that is generated by AODV is tagged as C'I'RL or control
packet. This tag will be used by the lower layers to route the
packet to the correct MAC interface. Moreover, the address
resolution protocol (ARP) [15] is extended to route the packets
depending on their tag to the correct MAC interface on the
destination node. A detailed discussion on the MAC at the
link layer and physical layer changes is given next.

4) Link and physical layers: We have undertaken sub-
stantial changes in both these layers. First, we define a
new concept of Cognitive Interface (See Cognitive Interface
block in Figure 3). A CR node may define any number of
these cognitive interfaces. Each interface constitutes of three
separate MAC-PHY layers; the first is for communicating
control packet information on a common control channel.
For e.g., AODV and ARP messages will be communicated
over such an interface. We call this interface the CTRL
interface. The second is used to transmit data messages to
neighboring nodes (7'X). This interface is switchable; i.e., it
switches between different channels to transmit queued data
packets that are destined to different nodes (and possibly,
different listening channels). The switching and transmission
times can be defined using the ns-3 attribute system. This
system is a mechanism to pass parameters on the command
line without the need to recompile the core of the simulator
to change the value of various exposed parameters. There
are several TX interface switching policies that we defined
in our simulator, such as round robin, random, and switch
between ‘active’ channels that imply channels that currently
have packets awaiting transmission in the MAC queue. Finally,
a switchable receiving interface RX is present, which senses
for PU activity, hand-offs when PU is detected and alerts
the neighbors about its new channel selection via an AODV
HELLO packet. The transmission, sensing times, and probabil-
ity of detection error can all be defined using the ns-3 attribute
system. We emphasize that the Cognitive Interface makes
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all these new calls through the Spectrum Manager block.
This provides a cleaner and easier cross-layer referencing as
opposed to having each layer hold references to several other
network layers. The tagging mechanism that was discussed
earlier in the transport and network layers are used here to
determine which interface a packet should be sent on.

The TX Distributed Coordination Function (DCF) is also
modified to store enqueued packets into different MAC queues
based on the channel that they should be transmitted on. This
will help the TX interface select which packets to transmit
when it switches spectrum.

At the physical layer (PHY), a new sensing state is added.
The functionality of the sensing state is similar to that of
the hand-off state where the PHY layer instructs the DCF
to halt dequeueing from the respective MAC queue, while
the sensing or hand-off operation is ongoing. The sensing
and hand-off times can be defined using the ns-3 attribute
system. The sensing state in the PHY layer uses the Spectrum
Manager APIs which query the PU Database (See Figure 2)
to determine PU activity. Note that the PHY layer can switch
between any number of defined channels. These channels can
have a different frequency, propagation path loss and delay
models, as defined by the default ns-3 simulation environment.

C. RX interface cognitive cycle

When the RX component in the Cognitive Interface starts
sensing, hand-off or transmit data, it transitions along the
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cognitive cycle depicted in the state machine in Figure 4. The
cycle is first triggered by the Sense state. If no PU activity
is detected, the state moves to the Transmit state, and after
a predefined period of data transmission, returns back to the
Sense state. If a PU is found, the state machine moves to the
Decision state. Based on the policies executed, if the decision
is to stay on the PU occupied channel, then no transmission
will happen and the state immediately returns back to the Sense
state. If a hand-off is decided, the decision block also decides
which channel the hand-off should occur to. After this, the
state machine moves to the Handoff state. Once the hand-off
is completed, sensing is triggered again before confirming the
PU’s vacancy and the data transmission resumption.

IV. PERFORMANCE EVALUATION

In this section, we first validate the proposed module by
running a single UDP flow from one CR node to another.
We study the performance overhead when comparing ns3 with
our cognitive radio extension (abbreviated as CRE-NS3), and
finally evaluate CRE-NS3 versus the previous iteration of this
module for ns-2 (CRAHN [11]).

The environment where the next set of evaluations is con-
ducted is an Arch Linux 64-bit distribution with Linux kernel
v3.13.5. The CPU is an Intel Core i7 860 clocked at 2.80 GHz.
All simulations were performed in a single thread/core. The
installed RAM has a total capacity of 16 GB.

In the simulations below, the nodes perform sensing and
data transmission in intervals of 100ms and 1s, respectively.
The CR interface channel switching delay is set to 25us. The
wifi MAC standard is set to 802.11g with a rate of 54 Mbps.
We define a total number of 11 channels that the PUs and CR
users can switch to.

A. Validation

The purpose of this evaluation is validate the CR extension
by showing the throughput of a UDP flow with a constant
data rate of 512kbps or 62.5K B/s from one CR to another.
Both nodes are subject to PU activity that follows an on-off
exponential distribution with average duration of 2s and 10s,
respectively. Figure 5 shows the stream’s throughput at the
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Fig. 6. Simulated CR network topologies (a) and (b).
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sink. The gray areas indicate the times when the PU is active.
In this simulation, the switching policy is set to never (i.e.
nodes do not switch to a vacant channel when a PU is detected,
instead, they continue sensing until the channel is vacant). This
choice was made to emphasize the disruption of data whenever
a PU is active. We can clearly see that the flow is disrupted
every time a PU is active. We also observe that the throughput
receives a spike whenever (a) the PU vacates the channel, and
(b), whenever the nodes perform sensing for 100ms. Both of
these spikes are explained by the flushing of the MAC queue
that accumulates packets while the nodes wait for the PU to
vacate or when the nodes perform sensing.

B. CRE-NS3 overhead

In this evaluation, the nodes are placed in a topology as
indicated by Figure 6(a). Each node sends constant rate data
at 512 kbps to the immediate neighboring nodes as indicated
in the figure by the arrows for a total of 250 s. A set
of 20 simulation runs are executed for a non-CR network,
and then again for a CR network. The total execution time
(kernel and userspace in Linux’s time tool) and the maximum
memory consumption using Valgrind’s massif tool [16] are
then averaged over the 20 runs. Figure 7 shows the increase
in both CPU utilization and memory consumption by our
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proposed module. The memory consumption increases by
about 0.8 M B and the CPU execution time increases by about
10 s. The increase in both the execution and the memory
consumption is mainly attributed to the fact that every CR
node in the simulation has a combination of three total MAC-
PHY interfaces instead of one (See Figure 3).

C. CRE-NS3 vs. CRAHN

Due to its similar architecture, in this section, CRAHN [11]
in ns-2 is evaluated against CRE-NS3 for the same network
topology as depicted by Figure 6(b). The number of nodes n
increases with every simulation run until n = 13 or a total
number of nodes of 13 x 13 = 169. If ¢ and j are a node’s
row and column index, then each node sends a stream to the
nodes located at ¢ + 1, and 4,7 4+ 1 as depicted in the figure
by the arrows. The stream that is sent from each node is a
constant UDP flow with a bitrate of 512kbps.

While the total CPU execution time is improved by a small
margin in CRE-NS3 as shown in Figure 8, Figure 9 shows a
substantial improvement (by an order of magnitude of 1) in
the memory consumption for the same network topology.

V. CONCLUSION

In this paper, we introduce the first cognitive radio extension
for ns-3. In an era where spectrum scarcity in congested cities
becomes a real problem, this new simulation environment will
provide city network architects with a virtual platform that
is able to perform the major spectrum-related adaptation. It

also offers flexible policy-based decision making. We have
introduced substantial changes to the transport, network, link
and physical layers in ns-3 to incorporate the aforementioned
CR features. Our evaluations also show minimal processing
and memory overhead when running the extension as opposed
to the base ns-3, and lower memory and processing time when
compared to that of the previous CR extensions developed for
ns-2.
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